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a b s t r a c t

By introducing the misclassification and delayed decision costs into the probabilistic approximations of the

target, the model of decision-theoretic rough set is then sensitive to cost. However, traditional decision-

theoretic rough set is proposed based on one and only one cost matrix, such model does not take the char-

acteristics of multiplicity and variability of cost into consideration. To fill this gap, a multicost strategy is

developed for decision-theoretic rough set. Firstly, from the viewpoint of the voting fusion mechanism, a

parameterized decision-theoretic rough set is proposed. Secondly, based on the new model, the smallest

possible cost and the largest possible cost are calculated in decision systems. Finally, both the decision-

monotocity and cost criteria are introduced into the attribute reductions. The heuristic algorithm is used

to compute decision-monotonicity reduct while the genetic algorithm is used to compute the smallest and

the largest possible cost reducts. Experimental results on eight UCI data sets tell us: 1. compared with the raw

data, decision-monotocity reduct can generate greater lower approximations and more decision rules; 2. the

smallest possible cost reduct is much better than decision-monotocity reduct for obtaining smaller costs and

more decision rules. This study suggests new research trends concerning decision-theoretic rough set theory.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cost-sensitive learning is a valuable problem. It has been ad-

dressed by many researchers from a variety of fields including de-

cision making [22], machine learning [8,9,55,41], pattern recogni-

tion [56] and so on. Note that in recent years, cost-sensitive learn-

ing has also attracted much attention of researchers in rough set

theory [32]. In broad terms, rough set is one of the most impor-

tant tools of Granular Computing (GrC) [33,44,46] and then in-

troduction of cost sensitivity into rough set is bound to bring

GrC a worthwhile topic.

Roughly speaking, driven by many practical applications, two

main types of costs have been discussed in rough set: test cost and

misclassification cost. On the one hand, each test (i.e., attribute,

measurement, feature) may have an associated cost which is re-

garded as test cost. For example, in medical diagnosis, a blood
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test has a cost which may be the time or money spent on testing

blood. On the other hand, misclassification cost is basically the loss

when classifying data into a specific outcome. For example, it may be

troublesome if a healthy subject is misclassified as a patient, but it

could result in a more serious consequence if a patient is misclassi-

fied as healthy subject.

In rough set theory, two crucial aspects should be covered in terms

of costs. Firstly, since the basic model, i.e., lower and upper approx-

imations are not sensitive to cost, then how to introduce cost into

modeling is an interesting issue. Such aspect will provide us a new

perspective to characterize the uncertainty, mainly because if lower

and upper approximations are sensitive to cost, then inevitably, un-

certainty [1,7] in rough set is sensitive to cost. Secondly, it is well

known that attribute reduction is one of the key topics in rough set,

from which we can see that finding reducts with some particular

requirements of cost (e.g., to find reduct with the smallest cost) is

also a challenge. In recent years, unremitting efforts have led to great

progress around the two aspects we mentioned above.

• As far as the modeling is concerned, both test cost and misclassi-

fication cost have been explored.

For example, by considering test cost of the attributes, Yang
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et al. [43] introduced test cost into the construction of the multi-

granulation rough set [35,37,13]; by considering misclassification

cost, Yao [47] proposed the concept of the Decision-Theoretic

Rough Set (DTRS). Decision-theoretic rough set is actually a prob-

abilistic rough set. Since the determination for a pair of the

thresholds used in probabilistic rough set is a substantial chal-

lenge, then the pair of thresholds presented in decision-theoretic

rough set is calculated by loss function. It must be noticed that

for Yao’s loss function matrix, not only misclassification cost is

used, but also the delayed decision cost is considered. Therefore,

decision-theoretic rough set is corresponding to a three-way de-

cision procedure [45]. For more generalizations and applications

of decision-theoretic rough set, please refer to Refs. [2,4,14,15,

17–21,23,24,26,27,38,39,42,53].
• As far as the attribute reduction is concerned, both test cost and

misclassification cost have also been studied by some researchers.

For example, Min et al. [28,31] studied the approaches to test cost

based attribute reduction. Their goals are to find reducts with a

smaller (obtained by a competition strategy) or the smallest (ob-

tained by a backtracking approach) test costs. Following decision-

theoretic rough set, Jia et al. [11,12] formulated an optimization

problem. They aimed to minimize the cost of decision. With re-

spect to different requirements, Yao and Zhao [48] studied differ-

ent definitions of attribute reductions in decision-theoretic rough

set.

From discussions above, we can see that decision-theoretic rough

set takes the cost into consideration (model is sensitive to cost) and

then attribute reduction of decision-theoretic rough set is bound

to close to cost. For Yao’s classical decision-theoretic rough set, the

loss function is a 3 × 2 cost matrix which includes both misclas-

sification and delayed decision costs. However, one and only one

cost matrix may not be good enough for problem solving. We have

some practical examples to illustrate the limitations of one cost

matrix.

1. Take for instance one medical accident, it is reasonable to assume

that different regions may execute different criteria for making

compensation, i.e., the costs of the same medical accident may

be different in different regions. The developed regions may pay

more than that paid by a developing region for economic factors.

2. Here is a China old saying: “Everyone has a steelyard in his heart”

and “It is hard to please all”, that is, for a given decision, different

individuals may have different views which will inevitably gener-

ate different costs.

3. Suppose that Mr. X wants to buy a house, if the prices show an up

trend, then Mr. X faces different costs during different periods. In

other words, one and only one cost is not enough to characterize

the variability of cost.

Based on the above examples, it is noticeable that in Yao’s

decision-theoretic rough set, one and only one cost matrix does

not take the characteristics of multiplicity and variability of cost

into consideration. Therefore, multiple cost matrices are required.

From this point of view, a voting fusion mechanism will be used

and then three models are constructed when facing multiple cost

matrices. They are referred to as θ (parameterized), optimistic and

pessimistic decision-theoretic rough sets in this paper. Note that

optimistic and pessimistic models are two limits of parameterized

approach.

To facilitate our discussions, we present the basic knowledge

about rough set and decision-theoretic rough set in Section 2.

In Section 3, not only three multicost based decision-theoretic

rough sets are proposed, but also the computations of smallest

and largest possible costs are discussed. In Section 4, decision-

monotocity criterion based attribute reduction and cost criterion

based attribute reduction are presented. The heuristic algorithm is

used to compute decision-monotocity reduct while the genetic al-

gorithm is used to compute cost reduct. In Section 5, the theoret-

ical results shown in this paper are tested on eight UCI data sets.

The paper ends with conclusions and outlooks for further research

in Section 6.

2. Preliminary knowledge on rough sets

2.1. Rough set

An information system can be considered as a pair I =<

U ,AT >, in which U is a non-empty finite set of the objects

called the universe; AT is a non-empty finite set of the attributes.

∀a ∈ AT ,Va is the domain of attribute a. ∀x ∈ U ,a(x) denotes the

value that x holds on a (∀a ∈ AT ). Given an information system

I,∀A ⊆ AT , an indiscernibility relation IND(A) may be defined as

IND(A) = {(x,y) ∈ U2 : ∀a ∈ A,a(x) = a(y)}.

Obviously, IND(A) is an equivalence relation. ∀X ⊆ U , one can

construct the lower and upper approximations of X by IND(A) such

that

A(X) = {x ∈ U : [x]A ⊆ X}, (1)

A(X) = {x ∈ U : [x]A ∩ X �= ∅}; (2)

where [x]A = {y ∈ U : (x,y) ∈ IND(A)} is the equivalence class of x. The

pair (A(X),A(X)) is a Pawlak’s rough set of X with respect to A. The

positive region of X is POSA(X) = A(X), the boundary region of X is

BNDA(X) = A(X) − A(X), and the negative region of X is NEGA(X) =
U − A(X).

2.2. Decision-theoretic rough set

For a Bayesian decision procedure, a finite set of the states can

be denoted by � = {ω1,ω2, . . . ,ωs}. A finite set of t possible ac-

tions can be denoted by A = {a1,a2, . . . ,at}. ∀x ∈ U , let Pr(ω j|x) be

the conditional probability of object x being in state ω j ,λ(ai|ω j)
be the loss, or cost for taking action ai when state is ω j . Sup-

pose that we take the action ai for object x, then the expected

loss is

R(ai|x) =
s∑

j=1

λ(ai|ω j) · Pr(ω j|x). (3)

For Yao’s decision-theoretic rough set model, the set of states is

composed by two classes such that � = {X , ∼ X}. It indicates that an

object is in class X or out of class X; the set of actions is given by

A = {aP ,aB,aN}, in which aP ,aB and aN expresses three actions: aP in-

dicates that x is classified into decision-theoretic positive region of X,

i.e., POSA
DT (X);aB indicates that x is classified into decision-theoretic

boundary region of X, i.e., BNDA
DT (X);aN indicates that x is classified

into decision-theoretic negative region of X, i.e., NEGA
DT (X). The loss

function regarding the costs of three actions in two different states is

given in Table 1. Obviously, Table 1 is a 3 × 2 matrix. It is denoted by

M in this paper.

In Table 1, λPP ,λBP and λNP are the losses for taking actions of

aP ,aB and aN , respectively, when stating x is included into X;λPN ,λBN

and λNN are the losses for taking actions of aP ,aB and aN , respec-

tively, when stating x is out of X. ∀x ∈ U , by using the conditional

probability Pr(X|[x]A), the expected losses associated with three

actions are:
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