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a b s t r a c t

Decision-theoretic rough set theory is quickly becoming a research direction in rough set theory, which

is a general and typical probabilistic rough set model with respect to its threshold semantics and de-

cision features. However, unlike the Pawlak rough set, the positive region, the boundary region and the

negative region of a decision-theoretic rough set are not monotonic as the number of attributes in-

creases, which may lead to overlapping and inefficiency of attribute reduction with it. This may be

caused by the introduction of a probabilistic threshold. To address this issue, based on the local rough set

and the dynamic granulation principle proposed by Qian et al., this study will develop a new decision-

theoretic rough set model satisfying the monotonicity of positive regions, in which the two parameters

α and β need to dynamically update for each granulation. In addition to the semantic interpretation of

its thresholds itself, the new model not only ensures the monotonicity of the positive region of a tar-

get concept (or decision), but also minimizes the local risk under each granulation. These advantages

constitute important improvements of the decision-theoretic rough set model for its better and wider

applications.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Rough set theory proposed by Pawlak in 1982 [23] has become

an important tool for dealing with uncertainty management and un-

certainty reasoning. Because of no prior knowledge, the rough set

theory has a wide variety of applications including pattern recog-

nition, data mining, machine learning, knowledge discovery, and

so on [3,6,7,10,12,13,11,16,29,34,52]. As we know, the lower approx-

imation of a set in rough set theory is defined by a strict inclu-

sion relation, which may lead to its sensitivity to noisy data for

attribute reduction and classification tasks. For this observation,

through incorporating probabilistic approaches to rough set theory,

several probabilistic generalizations of rough sets have been pro-

posed [37,42,46,60], in which threshold values are aforehand given.

In recent years, based on different threshold arrangements, different

versions of probabilistic rough set approaches were proposed one af-

ter another, such as the 0.5-probabilistic rough set [24], the decision-

theoretic rough set model [43,44,47], the variable precision rough set

(VPRS) model [59], membership functions [26], parameterized rough

set models [4], Bayesian rough set model [35], game-theoretic rough

set [5], and so on.

∗ Corresponding author. Tel./fax: +86 0351 7018176.

E-mail addresses: sangyl@sxu.edu.cn (Y. Sang), ljy@sxu.edu.cn (J. Liang),

jinchengqyh@126.com (Y. Qian).

Within the family of probabilistic rough sets, the semantic inter-

pretation of the required threshold parameters is the most funda-

mental difficulty with the probabilistic approximations. In the liter-

ature [43,44], we saw the first report to solve this difficulty for proba-

bilistic rough set approximations in a decision-theoretic framework.

In the framework of the decision theory, Bayesian decision theory was

firstly introduced to minimize the decision costs, which provides a

scientific method for determining and interpreting threshold values

through taking costs and risks into account. From this viewpoint, we

can say that the decision-theoretic rough set has a threshold seman-

tic interpretation. It deserves to point out that the decision-theoretic

rough set model can be regarded as a generalization of probabilistic

rough set models [46] because it can derive various existing rough

set models through setting different thresholds. Based on this frame-

work, Yao [47] then presented a new decision-making method, called

a three-way decision method, in which positive region, boundary re-

gion and negative region are respectively seen as three actions. In

the literature [48], the author further emphasized the superiority

of three-way decisions in probabilistic rough set models. More re-

cently, Zhang et al. [53] introduced a new recommender system to

consult the user for the choice by combining three-way decisions

and random forests. Yu et al. [50] proposed a tree-based incremen-

tal overlapping clustering method using three-way decision theory.

To date, the theoretical framework have been largely enriched
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since the decision-theoretic rough sets were proposed [8,9,32,38,57].

The decision-theoretic rough set model, in recent years, has also

been used in many applications, such as decision-making [38],

clustering analysis [49,50], spam filtering [58], investment deci-

sions [21], multi-view decision models [57] and multiple-category

classification [56].

It is well known that, in the Pawlak rough set model [25],

the lower approximation of a given target concept with respect to

an equivalence relation R is much smaller than the corresponding

lower approximation with respect to an equivalence relation R′ ≺ R.

This property is called monotonicity. Naturally, given a target deci-

sion, its positive region, boundary region and negative region are

all monotonic in the framework of the Pawlak rough set as well.

However, in probabilistic approximations, because of the introduc-

tion of probabilistic thresholds, the conditional probability of an

object x classified into a target concept may increase or decrease

as the number of attributes becomes bigger. In other words, the

monotonicity of lower approximations of a target concept may not

hold in probabilistic approximation models. Accordingly, the pos-

itive region, boundary region and negative region of a given tar-

get decision have the same observation in terms of probabilistic

approximations.

In what follows, we analyze the importance of the monotonicity

of a lower approximation in the decision-theoretic rough set (DTRS).

As we know, attribute reduction is one key issue in rough set the-

ory, based on which one can extract decision rules for prediction

from an information system with class labels. Attribute reduction of

a target decision aims at finding a subset of attributes such that it

is at least as good as the original attribute set from the viewpoint

of decision ability. If the lower approximation of a target concept is

not monotonic, a found attribute reduct may be overlapping because

of the strict definition of attribute reduction. Except for this short-

coming, the process of attribute reduction is also computationally

time-consuming. To overcome these two issues, it is very desirable

to develop a new decision-theoretic rough set satisfying the mono-

tonicity of a target concept, which is the main motivation of this

study.

In fact, several studies about the monotonicity of attribute reduc-

tion using DTRS have been reported [8,21,22,45,55]. Yao and Zhao

[45] presented various criteria including the decision-monotonicity

criterion, the generality criterion and the cost criterion for at-

tribute reduction of probabilistic rough set models. From the view-

point of information theory, Ma et al. [22] proposed three new

monotonic measure functions by considering variants of condi-

tional information entropy for obtaining a monotonic attribute re-

duction process. Li et al. [15] developed a so-called positive re-

gion expanding reduct. Blaszczyński [1] considered three types of

monotonicity properties and proposed several new measures with

monotonicity such that the corresponding lower approximation

satisfies monotonicity. Although these studies have provided sev-

eral alternative solutions, how to solve the non-monotonicity of

lower approximations keeping the conditional probability form un-

changed is still an open problem in the decision-theoretic rough

set.

To address the above problem, from the viewpoint of gran-

ular computing [19,20,41,51], this paper develops a new proba-

bilistic rough set framework under dynamic granulation, called

the decision-theoretic rough set under dynamic granulation (DG-

DTRS). There are two main improvements in the proposed model.

For the first improvement, given a target concept, we only judge

whether each of objects within it is included in its lower ap-

proximation or not, rather than the entire universe. For the sec-

ond improvement, we need to dynamically update the threshold

parameters α and β when granular structures for approximat-

ing a target concept/decision are changed. Therefore, besides the

semantic interpretation of its thresholds, the proposed model not

only ensures the monotonicity of the positive region of a target con-

cept (or decision), but also minimizes the local risk under each gran-

ulation. Hence, the DG-DTRS with these advantages can be seen as an

important improvement of the existing decision-theoretic rough set

model.

The study is organized as follows. Some basic concepts in Pawlak

rough sets and decision-theoretic rough sets are briefly reviewed in

Section 2. In Section 3, a new probabilistic set-approximation ap-

proach is constructed in the context of dynamic granulation world,

and some of its nice properties are explored. Furthermore, based on

Bayesian decision procedure, we also give a method for updating

the required threshold parameters in the proposed model. Finally,

Section 4 concludes this paper by bringing some remarks and dis-

cussions.

2. Preliminary knowledge on decision-theoretic rough sets

In this section, we briefly review some basic concepts of decision-

theoretic rough set model.

2.1. Pawlak’s rough set

A decision table is a tuple S = (U, AT = C ∪ D,Va|a ∈ At, Ia|a ∈ At),

where U is a finite non-empty set of objects, called a universe, C is

a non-empty finite set of conditional attributes, D is a finite set of

decision attributes, Va (a ∈ AT ) is the domain of attribute a, and Ia :

U → Va is an information function that maps an object in U to exactly

one value in Va. A decision table is simply denoted by S = (U, At =
C ∪ D) [25].

An attribute subset A ⊆ At determines an equivalence relation EA

(or simply E). That is,

EA = {(x, y) ∈ U × U|∀a ∈ A, Ia(x) = Ia(y)}.
Two objects in U are equivalent to each other if and only if they have

the same values on all attributes in A. An equivalence relation is re-

flexive, symmetric and transitive.

The pair apr = 〈U, EA〉 is called an approximation space defined

by the attribute set A [25]. The equivalence relation EA induces a par-

tition of U, denoted by U/EA or U/A. An object x ∈ U is described by

its equivalence class of U/EA : [x]EA
= [x]A = {y ∈ U|(x, y) ∈ EA}. Each

equivalence class [x]A may be viewed as an information granule con-

sisting of indistinguishable elements. The granular structure induced

by an equivalence relation is a partition of the entire universe.

Given an approximation space 〈U, EA〉. For an arbitrary subset

X ⊆ U , one can construct its lower and upper approximations with

information granules of the universe induced by the partition U/A via

the following definition:

apr
A
(X) = ∪{[x]A ⊆ X|x ∈ U},

aprA(X) = ∪{[x]A ∩ X 
= ∅|x ∈ U}.
The pair 〈apr

A
(X), aprA(X)〉 is called a rough set of X with respect to

the equivalence relation EA. Equivalently, they can also be rewritten

as

apr
A
(X) = {x|P(X|[x]A) = 1|x ∈ U},

aprA(X) = {x|P(X|[x]A) > 0|x ∈ U},
where P(X|[x]A) denotes the conditional probability that the object x

belongs to a target concept X.

Through using the rough set approximations of X defined by A,

the universe U is divided into three disjoint regions: the positive
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