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a b s t r a c t

This paper studies variable precision multigranulation fuzzy decision-theoretic rough sets in an information

system. We firstly review definitions and properties of multigranulation fuzzy rough sets. A novel member-

ship degree based on single granulation rough sets is proposed. Then two operators based on this mem-

bership degree are defined. By employing these operators, two types of variable precision multigranulation

fuzzy rough sets in an information system are proposed. Finally, inspired by three-way decisions, we propose

Type-1 variable precision multigranulation decision-theoretic fuzzy rough sets.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Human brain is a very great machine to capture useful informa-

tion quickly and accurately, so it is an interesting subject to simulate

the thinking way of human brain. There are many attempts. One of

the methods is Pawlak’s rough set theory [21], which deals with in-

sufficient and incomplete data. It is one of the characteristics of rough

set theory that uncertain concepts and phenomena are approximated

by the existing knowledge [22]. From both theoretical and practical

viewpoints, Pawlak’s rough approximation is very stringent, and may

limit application scopes. With more than thirty years’ development,

many authors have generalized Pawlak’s rough set theory by using

nonequivalence binary relations [1,13,32,34,43,45,49], and developed

these rough set models based on reasoning and knowledge acquisi-

tion in incomplete information tables. Moreover, many authors gen-

eralized rough approximations to fuzzy environments, for example,

rough fuzzy sets and fuzzy rough sets [3,7,23,27,36,52,53,55]. These

models have been employed to handle fuzzy and quantitative data.

Previously, many scholars used granular computing to analyze in-

formation sources. The method of granular computing is proposed

by Zadeh [54], which is based on a single granulation structure. Re-

cently, rough set theory becomes a popular mathematical framework

for granular computing. In this theory, concepts are expressed by up-

per and lower approximations induced by a single granulation struc-

ture [8,9,24,44]. Thus, it is called single granulation rough set model.

Since we can catch an element from different aspects [26] or dif-

ferent levels [18,37], and we always meet different useful information
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sources for the same element, so we need to give an overall consider-

ation for these information sources. Thus, the theory of granular com-

puting should be generalized to suit multiple information sources.

In order to meet actual needs, Qian et al. [27] first proposed multi-

granulation rough sets (MGRS, in short). It has a more widely appli-

cation scope, for example, decision making, feature selection, and so

on [12,28–30,42]. Since for different requirements, a concept can be

described by different multiple binary relations, many extensions of

MGRSs have been proposed. For example, Qian and Liang et al. gen-

eralized classical multigranulation rough sets to neighborhood-based

ones [11] and covering ones [7]. The neighborhood multigranulation

rough sets are useful for hybrid data sets. Dou et al. [2] investigated

variable precision multigranulation rough sets. Yao et al. discussed

rough set models in multigranulation spaces [50]. Qian et al. [31] dis-

cussed multigranulation decision-theoretic rough sets. The topolog-

ical structures of multigranulation rough sets were discussed by She

et al. [35]. Li et al. [6] made a detailed comparison between multi-

granulation rough sets and concept lattices via rule acquisition. Fur-

thermore, multigranulation rough sets based on fuzzy binary rela-

tions [41] and multigranulation fuzzy rough sets based on classical

tolerant relations [38] were defined. Liu et al. [14,15] proposed fuzzy

covering multigranulation rough sets. Liang et al. [10] proposed an

efficient algorithm for feature selection in large-scale and multiple

granulation data sets. Since there always exist some noises, uncer-

tainty and fuzziness in an information system, it is difficult for us to

deal with all the problems only using the above MGRS theories. It is

necessary for us to study the fuzzy MGRSs.

There always exist a few errors in approximations, but some un-

certainty in classification process is admitted in making decision. To

handle uncertain and imprecise information, in 1993, Ziarko pro-

posed variable precision rough set model [58], which is directly
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derived from Pawlak’s rough set model without any additional as-

sumptions. It may make a better utilization of data being analyzed,

and a lower likelihood of incorrect decision. Moreover, this model is

also useful for eliminating noise attributes. In order to weaken the

errors generated by incompleteness, uncertainty and noises, we try

to construct variable precision rough sets based on multigranulation

fuzzy rough sets.

The essential ideas of three-way decisions are commonly used in

different fields and disciplines by different names and notations. It is

more suitable for decision making of human cognition [19]. Yao first

proposed a unified framework of the theory of three-way decisions in

2010 [46]. The theory of three-way decisions is constructed based on

the notions of acceptance, rejection and noncommitment, adding a

noncommitment notion with respect to two-way decisions. It is also

used to interpret three regions of Pawlak’s rough sets [47,48]. Corre-

sponding to the three regions, one may construct rules for acceptance

from the positive region, construct rules for rejection from the nega-

tive region and construct rules for noncommitment from the bound-

ary region. In recent years, three-way decision theory develops in a

wide range [49] and is more banausic in many aspects, for example,

email spam filtering [57] and social networks [25]. Three-way deci-

sion rough sets in interval-value and fuzzy circumstances are studied

[16,17,56]. Three-way decision model based on the evidence theory is

also studied by Xue [40]. Yu et al. studied a tree-based incremental

overlapping clustering method using the three-way decision theory

[51]. In this paper, we would like to combine the method of three-

way decisions and variable precision rough sets based on multigran-

ulation fuzzy approximation spaces, which can help us to make a rea-

sonable and suitable decision for every element.

The rest of this paper is organized as follows: Section 2 re-

views definitions and properties of optimistic multigranulation fuzzy

approximations and pessimistic multigranulation fuzzy approxima-

tions. Section 3 proposes a novel membership degree, and two op-

erators based on this membership degree in multigranulation fuzzy

approximation space are also defined. Then, we define two types of

variable precision multigranulation fuzzy rough sets in an informa-

tion system. Section 4 studies decision-theory of the Type-1 variable

precision fuzzy rough sets. We then conclude the paper with a sum-

mary and give an outlook for further researches in Section 5.

2. Basic concepts

In this section, we first review definitions and propositions of

fuzzy rough sets [20] and multigranulation fuzzy rough sets [39].

Let S = (U, AT) be an information system, in which U is a non-

empty and finite universe of discourse, and AT is a non-empty finite

set of attributes. The set of all fuzzy sets defined on U is denoted by

F(U). Every attribute is a fuzzy set, that is, ∀x ∈ U, a ∈ AT, the value

of x on attribute a is a(x) ∈ [0, 1]. R: U × U → [0, 1] is a fuzzy tol-

erance relation [20] satisfying (1) reflexivity: R(x, x) = 1, ∀x ∈ U, (2)

symmetry: R(x, y) = R(y, x), ∀x, y ∈ U. Given A⊆AT, RA is a fuzzy toler-

ance relation, ∀x ∈ U, RA(x) is a fuzzy set such that RA(x)(y) = RA(x, y),
∀y ∈ U.

Using fuzzy tolerance relation RA, ∀X ∈ F(U), the lower and upper

approximations of X can be computed by approximation operators RA

(X) and RA(X). They are defined as follows: ∀x ∈ U,

RA(X)(x) =
∧
y∈U

((1 − RA(x, y)) ∨ X(y)), (1)

RA(X)(x) =
∨
y∈U

(RA(x, y) ∧ X(y)). (2)

The partial relation of two fuzzy tolerance relations is defined

as: for two fuzzy tolerance relations R1 and R2, R1	R2 if and only if

R1(x)⊆R2(x) for each x ∈ U. In this case, R2 is coarser than R1.

Multiple granulation structures can be obtained by different fuzzy

binary relations. Combining the granulation structures, multigranu-

lation fuzzy rough sets can be defined.

2.1. Optimistic multigranulation fuzzy rough sets

Associating fuzzy tolerance rough sets with the theory of gran-

ular computing, Xu et al. defined optimistic and pessimistic multi-

granulation fuzzy rough set models on fuzzy tolerance relations, and

discussed their properties in 2011 [39]. These models are reasonable

generalizations of crisp multigranulation rough set models. In this

subsection, we review the optimistic multigranulation fuzzy rough

set model.

Suppose S = (U, AT) is a fuzzy information system, A1, A2, . . . ,

Am ⊆ AT, and RAi
is a fuzzy tolerance relation with respect to Ai, then

∀X ∈ F(U),
∑m

i=1 RO
Ai
(X) and

∑m
i=1 RO

Ai
(X) are the optimistic multigran-

ulation fuzzy lower and upper approximations, respectively. They are

defined as follows: ∀x ∈ U,

m∑
i=1

RO
Ai
(X)(x) =

m∨
i=1

(∧
y∈U

((1 − RAi
(x, y)) ∨ X(y))

)
, (3)

m∑
i=1

RO
Ai
(X)(x)=1 −

m∑
i=1

RO
Ai
(∼X))(x) =

m∧
i=1

(∨
y∈U

(RAi
(x, y) ∧ X(y))

)
,

(4)

where ∼ X(x) = 1 − X(x), ∀x ∈ U. If
∑m

i=1 RO
Ai
(X) = ∑m

i=1 RO
Ai
(X), then

X is an optimistic multigranulation fuzzy definable set. Otherwise, X

is an optimistic multigranulation fuzzy rough set.

The optimistic multigranulation fuzzy boundary region of X is

BNO
m∑

i=1

RAi

(X) =
m∑

i=1

RO
Ai
(X) ∩

(
∼

m∑
i=1

RO
Ai
(X)

)
. (5)

By the definitions of optimistic multigranulation fuzzy lower and

upper approximations, we have the following properties of optimistic

multigranulation fuzzy rough sets based on a fuzzy tolerance approx-

imation space: ∀X, Y ∈ F(U),

1.
∑m

i=1 RO
Ai
(X) ⊆ X ⊆ ∑m

i=1 RO
Ai
(X);

2.
∑m

i=1 RO
Ai
(∅) = ∑m

i=1 RO
Ai
(∅) = ∅,

∑m
i=1 RO

Ai
(U) = ∑m

i=1 RO
Ai
(U) = U;

3. X ⊆ Y ⇒ ∑m
i=1 RO

Ai
(X) ⊆ ∑m

i=1 RO
Ai
(Y),

∑m
i=1 RO

Ai
(X) ⊆ ∑m

i=1 RO
Ai
(Y);

4.
∑m

i=1 RO
Ai
(X) = ⋃m

i=1 RAi
(X),

∑m
i=1 RO

Ai
(X) = ⋂m

i=1 RAi
(X);

5.
∑m

i=1 RO
Ai
(∼X)= ∼(

∑m
i=1 RO

Ai
(X)),

∑m
i=1 RO

Ai
(∼X)= ∼(

∑m
i=1 RO

Ai
(X));

6.
∑m

i=1 RO
Ai
(X ∩ Y) = ⋃m

i=1 (RAi
(X) ∩ RAi

(Y)),∑m
i=1 RO

Ai
(X ∪ Y) = ⋂m

i=1 (RAi
(X) ∪ RAi

(Y));

7.
∑m

i=1 RO
Ai
(X ∩ Y) ⊆ ∑m

i=1 RO
Ai
(X) ∩ ∑m

i=1 RO
Ai
(Y),∑m

i=1 RO
Ai
(X ∪ Y) ⊇ ∑m

i=1 RO
Ai
(X) ∪ ∑m

i=1 RO
Ai
(Y);

8.
∑m

i=1 RO
Ai
(X ∪ Y) ⊇ ∑m

i=1 RO
Ai
(X) ∪ ∑m

i=1 RO
Ai
(Y),∑m

i=1 RO
Ai
(X ∩ Y) ⊆ ∑m

i=1 RO
Ai
(X) ∩ ∑m

i=1 RO
Ai
(Y).

If RA1
	 RA2

	 · · · 	 RAm
, then we have (1)

∑m
i=1 RO

Ai
(X))(x) =

RA1
(X)(x); (2)

∑m
i=1 RO

Ai
(X))(x) = RA1

(X)(x), ∀X ∈ F(U). Thus the op-

timistic multigranulation fuzzy lower and upper approximations are

dependent on the thinnest fuzzy relation.
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