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a b s t r a c t

Four kinds of constructive methods of rough approximation operators from existing rough sets are estab-

lished, and the important conclusion is obtained: some rough sets are essentially direct applications of these

constructive methods. Moreover, the new notions of non-dual multigranulation rough sets and hybrid multi-

granulation rough sets are introduced, and some properties are investigated.
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1. Introduction

The Pawlak’s rough set model [17] is based on equivalence re-

lations, it has been generalized to arbitrary binary relations based

rough sets, tolerance or similarity relations based rough sets, fuzzy

rough sets and intuitionistic fuzzy rough sets (see [4,5,44]), etc.

Moreover, as one of generalized models, covering rough sets has

attracted much attention and induced lots of interesting results

[13,19,31,34,38,40,46].

For the above rough set models, we usually only consider a sin-

gle approximation space. In some directions of research on multiple-

source approximation systems (see [6]), multi-agent systems or

groups of intelligent agents (see [23–25,29]), multigranulation rough

sets (see [7,9–12,20–22,27,36,39]), dynamic spaces and collections of

general approximation spaces (see [15,16]), we need to consider mul-

tiple approximation spaces. Therefore, the algebraic structures and

the relationship between various rough approximation pairs based

on different approximation spaces have become an important re-

search topic. In fact, algebra approach is widely applied in the re-

search of rough set theory (see [2,3,8,14,18,26,28,35,37,41–43,45]). In

this paper we will investigate basic algebraic operations (union and

intersection) of rough approximations pairs based on multiple ap-

proximation spaces.
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From another point of view, many rough set models (in particu-

lar, various multigranulation rough set models) are introduced, for

these rough approximation operators, whether there are some inher-

ent regularity or general generation rules? In this paper, we give a

novel answer of the question.

The remainder of this paper is organized as follows. The next sec-

tion deals with some preliminary concepts and properties regarding

the Pawlak’s rough sets and multigranulation rough sets. In Section 3,

we introduce four kinds of constructive methods of rough approxima-

tion operations from existing rough sets, and discuss their basic prop-

erties and applications. In Section 4, we apply the constructive meth-

ods to multigranulation rough sets, and firstly introduce the new no-

tions of non-dual multigranulation rough sets and hybrid multigran-

ulation rough sets. We also discuss multigranulation rough sets based

on general binary relations.

2. Basic concepts and properties

2.1. Pawlak’s rough sets

Let U denote a non-empty set called the universe. Let R⊆U × U

be an equivalence relation on U. The pair apr = (U, R) is called an

approximation space. The equivalence relation R partitions the set

U into disjoint subsets. Let U/R denote the quotient set consisting of

equivalence classes of R, and [x]R the equivalence class containing x.

Given an arbitrary set A⊆U, in general it may not be possible to de-

scribe X precisely in (U, R). One may characterize X by a pair of lower
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and upper approximations:

R(X) = {x ∈ U | [x]R ⊆ X},
R(X) = {x ∈ U | [x]R ∩ A �= ∅}.
The pair (R(X), R(X)) is referred to as rough set approximation of X.

Let ∼ X = U − X, we have the following basic properties of

Pawlak’s rough sets.

(L1) R(X) ⊆ X (H1) X ⊆ R(X)

(L2) R(∅) = ∅ (H2) R(∅) = ∅
(L3) R(U) = U (H3) R(U) = U

(L4) R(X ∩ Y) = R(X) ∩ R(Y) (H4) R(X ∪ Y) = R(X) ∪ R(Y)

(L5) X ⊆ Y ⇒ R(X) ⊆ R(Y) (H5) X ⊆ Y ⇒ R(X) ⊆ R(Y)

(L6) R(X ∪ Y) ⊇ R(X) ∪ R(Y) (H6) R(X ∩ Y) ⊆ R(X) ∩ R(Y)

(L7) R( ∼ X) =∼ R(X) (H7) R( ∼ X) =∼ R(X)

(L8) R(R(X)) = R(X) (H8) R(R(X)) = R(X)

(L9) R(R(X)) = R(X) (H9) R(R(X)) = R(X)

2.2. Multigranulation rough sets

In recent years, Qian et al. [20–22] have proposed a new rough set

model called multigranulation rough set. In this model, a target con-

cept is approximated by multiple binary relations. Next, we briefly

outline two definitions of multigranulation rough set models, i.e., op-

timistic and pessimistic multigranulation rough sets respectively. De-

tailed descriptions could be found in [20–22].

Definition 2.1. Let K = (U, R) be a knowledge base, where R is a fam-

ily of equivalence relations on the universe U. Let A1, A2, . . . , Am ∈ R,

where m is a natural number. For any X⊆U, its optimistic lower and

upper approximations with respect to A1, A2 . . . , Am are respectively

defined as follows.

m∑
i=1

Ai
O(X) = {x ∈ U|[x]A1

⊆ X or [x]A2
⊆ X or · · · or [x]Am

⊆ X};

m∑
i=1

Ai
O(X) =∼

m∑
i=1

Ai
O( ∼ X).

(
∑m

i=1 Ai
O(X),

∑m
i=1 Ai

O(X)) is called the optimistic multigranulation

rough sets of X. Here, the word “optimistic” means that only one gran-

ular structure is needed to satisfy with the inclusion condition be-

tween an equivalence class and a target concept when multiple inde-

pendent granular structures are available in problem processing.

Definition 2.2. Let K = (U, R) be a knowledge base, where R is a fam-

ily of equivalence relations on the universe U. Let A1, A2, . . . , Am ∈ R,

where m is a natural number. For any X⊆U, its pessimistic lower and

upper approximations with respect to A1, A2, . . . , Am are respectively

defined as follows.

m∑
i=1

Ai
P(X) = {x ∈ U|[x]A1

⊆ X and [x]A2
⊆ X and · · · and [x]Am

⊆ X};

m∑
i=1

Ai
P(X) =∼

m∑
i=1

Ai
P( ∼ X).

(
∑m

i=1 Ai
P(X),

∑m
i=1 Ai

P(X)) is called the pessimistic multigranulation

rough sets of X. Here, the word “pessimistic” means that all granular

structures are needed to satisfy with the inclusion condition between

an equivalence class and a target concept when multiple independent

granular structures are available.

3. Constructive methods of rough approximation operators from

existing approximation operators

In this section, we establish the constructive methods of rough ap-

proximation operators from existing rough approximation operators.

At first, we give some notations and preliminary results.

For convenience and unity, we use the following symbols (L1)–

(L9) and (H1)–(H9) to denote the basic properties of any operator pair

(apr, apr), where apr and apr are mappings from P(U) to P(U):

(L1) apr (X)⊆X;

(H1) X ⊆ apr(X)
(L2) apr(∅) = ∅
(H2) apr(∅) = ∅
(L3) apr(U) = U

(H3) apr(U) = U

(L4) apr(X ∩ Y) = apr(X) ∩ apr(Y)
(L4′) apr (X ∩ Y)⊆ apr (X) ∩ apr (Y)

(H4) apr(X ∪ Y) = apr(X) ∪ apr(Y)
(H4′) apr(X ∪ Y) ⊇ apr(X) ∪ apr(Y)
(L5) X⊆Y⇒ apr (X)⊆ apr (Y)

(H5) X ⊆ Y ⇒ apr(X) ⊆ apr(Y)
(L6) apr (X ∪ Y)⊇ apr (X) ∪ apr (Y)

(H6) apr(X ∩ Y) ⊆ apr(X) ∩ apr(Y)
(L7) apr( ∼ X) =∼ apr(X)
(H7) apr( ∼ X) =∼ apr(X)
(L8) apr(apr(X)) = apr(X)
(L8′) apr ( apr (X))⊇ apr (X)

(H8) apr(apr(X)) = apr(X)
(H8′) apr(apr(X)) ⊆ apr(X)
(L9) apr(apr(X)) = apr(X)

(L9′) apr(apr(X)) ⊆ apr(X)
(H9) apr(apr(X)) = apr(X)

(H9′) apr(apr(X)) ⊇ apr(X)
It is easy to prove the following lemma and the proof is omitted.

Lemma 3.1. Let U be a non-empty set, apr and apr be mappings from

P(U) to P(U). Then

(1) If apr satisfies (L1) for any X ∈ P(U), then apr satisfies (L2).

(2) If apr satisfies (H1) for any X ∈ P(U), then apr satisfies (H3).

(3) For any X, Y ∈ P(U), if apr satisfies (L4), then apr satisfies (L5).

(4) For any X, Y ∈ P(U), if apr satisfies (H4), then apr satisfies (H5).

(5) If apr satisfies (L1) and (L5) for any X, Y ∈ P(U), then apr satisfies

(L4′).
(6) If apr satisfies (H1) and (H5) for any X, Y ∈ P(U), then apr satisfies

(H4′).
(7) For any X, Y ∈ P(U), if apr satisfies (L6), then apr satisfies (L5).

(8) For any X, Y ∈ P(U), if apr satisfies (H6), thenapr satisfies (H5).

(9) If apr satisfies (L5) for any X, Y ∈ P(U), then apr satisfies (L6) for

any X, Y ∈ P(U).

(10) If apr satisfies (H5) for any X, Y ∈ P(U), thenapr satisfies (H6) for

any X, Y ∈ P(U).

(11) If apr and apr satisfy (L7) for anyX ∈ P(U), then apr and apr satisfy

(H7) for any X ∈ P(U). Moreover, if apr andapr satisfy (H7) for any

X ∈ P(U), then apr and apr satisfy (L7) for any X ∈ P(U).

(12) If apr and apr satisfy (L7) or (H7) for any X ∈ P(U), then

(L8) ⇐⇒ (H8), (L8′) ⇐⇒ (H8′), (L9) ⇐⇒ (H9),

(L9′) ⇐⇒ (H9′).
(13) If apr satisfies (L1) and (L8′) for anyX ∈ P(U), then apr satisfies

(L8) for any X ∈ P(U).

(14) If apr satisfies (H1) and (H8′) for anyX ∈ P(U), then apr satisfies

(H8) for any X ∈ P(U).

(15) If apr satisfies (L1) for any X ∈ P(U), then apr satisfies (L9′) for any

X ∈ P(U).

(16) If apr satisfies (H1) for any X ∈ P(U), thenapr satisfies (H9′) for

any X ∈ P(U).
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