
Knowledge-Based Systems 91 (2016) 263–274

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Three-way decisions based software defect prediction

Weiwei Li a,b,∗, Zhiqiu Huang a, Qing Li c

a College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
b College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
c College of Command Information System, PLA University of Science and Technology, Nanjing 210007, China

a r t i c l e i n f o

Article history:

Received 28 December 2014

Revised 24 September 2015

Accepted 29 September 2015

Available online 19 October 2015

Keywords:

Software defect classification

Software defect ranking

Three-way decisions

a b s t r a c t

Based on a two-stage classification method and a two-stage ranking method on three-way decisions, this

paper introduces a three-way decisions framework for cost-sensitive software defect prediction. For the clas-

sification problem in software defect prediction, traditional two-way decisions methods usually generate a

higher classification error and more decision cost. Here, a two-stage classification method that integrates

three-way decisions and ensemble learning to predict software defect is proposed. Experimental results on

NASA data sets show that our method can obtain a higher accuracy and a lower decision cost. For the ranking

problem in software defect prediction, a two-stage ranking method is introduced. In the first stage, all soft-

ware modules are classified into three different regions based on three-way decisions. A dominance relation

rough set based ranking algorithm is next applied to rank the modules in each region. Comparison exper-

iments with 6 other ranking methods present that our proposed method can obtain a better result on FPA

measure.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Software defect prediction attempts to predict the defect prone-

ness of new software modules with the historical defect data. It

plays an important role in improving the quality of software systems

[2,16,22]. The prediction technology is supposed to estimate the num-

ber of defects and to locate the position of each defect. Unfortunately,

it is still hard to obtain the exact number or position of all defects

based on current methods. Instead, since more information can be

extracted from the historical defect data, two types of machine learn-

ing tasks are usually applied in software defect prediction: classifi-

cation and ranking [65]. In a classification problem, new incoming

software modules will be classified into defect-prone and not-defect-

prone categories, with no differentiation between how bad the defect

ones will be. In a ranking problem, new incoming modules will be

sorted in descending order according to their numbers of predicted

defects. The purpose of ranking is to identify the modules most likely

to contain the largest numbers of defects and to allocate more testing

resources for them.

In existing work for software defect classification, most re-

searchers adopted many popular classifications methods directly,

such as Naive Bayes [53], SVM [18], decision tree [39], and

∗ Corresponding author at: College of Astronautics, Nanjing University of Aeronau-

tics and Astronautics, Nanjing 210016, China. Tel.: +8613584061768.

E-mail addresses: liweiwei@nuaa.edu.cn, jiaxiuyi@gmail.com (W. Li),

zqhuang@nuaa.edu.cn (Z. Huang), lqhyt1994@126.com (Q. Li).

neural networks [31]. Furthermore, by considering the misclas-

sification cost, some studies regarded the problem as a cost-sensitive

learning task [50], and employed cost-sensitive learning methods

including boosted neural network [80] and cost-boosting [34]. With

or without cost-sensitive learning, all these studies assumed the

underlying classification is binary and employed two-way decisions

methods. A two-way decisions method is a kind of “immediately”

decision method, which means it can provide the classification result

directly and quickly. However, a quick result is usually accompanied

by a high classification error. For example, assume the conditional

probability of one module being a defect is 0.51, which is computed

by the classification model, then its conditional probability of being

a not-defect is 0.49. According to the majority principle in simple

two-way decisions methods, this module will be classified into the

defect-prone category directly. For these “vague” modules with

conditional probabilities around 0.5, it has a high probability to clas-

sify them into wrong categories followed by more misclassification

cost.

In existing work for software defect ranking, most researchers

combined the defect-prone modules with the not-defect-prone mod-

ules together and ranked them based on the same attributes. A com-

mon method is applying regression models [8,9,13,24,33]. Regression

methods implicitly assume that there exists a quantitative relation

between the class label and the part of (or the whole of) attributes.

However, in most applications, there exists a qualitative relation be-

tween the class label and the attributes only, and the quantitative hy-

pothesis is too restrict to be satisfied.

http://dx.doi.org/10.1016/j.knosys.2015.09.035

0950-7051/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.knosys.2015.09.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2015.09.035&domain=pdf
mailto:liweiwei@nuaa.edu.cn
mailto:jiaxiuyi@gmail.com
mailto:zqhuang@nuaa.edu.cn
mailto:lqhyt1994@126.com
http://dx.doi.org/10.1016/j.knosys.2015.09.035


264 W. Li et al. / Knowledge-Based Systems 91 (2016) 263–274

In this paper we aim to solve the above problems. The three-

way decisions theory is applied into the software defect predic-

tion problem. The theory of three-way decisions is an extension of

the common two-way decisions [69]. The essential ideal of three-

way decisions is described in terms of a ternary classification ac-

cording to evaluations of a set of criteria [71]. In widely used two-

way decisions methods, an object will be accepted to classify into

a particular category when it satisfies the criteria, and it will be

rejected to classify into the particular category when it does not

satisfy the criteria. By considering the uncertainty in many situa-

tions, three-way decisions methods classify objects based on the

set of criteria with some degree, and use thresholds on the de-

grees of satisfiability to make one of three decisions: (a) accept an

object as satisfying the set of criteria if its degree of satisfiabil-

ity is above a certain level; (b) reject the object by treating it as

not satisfying the criteria if its degree of satisfiability is below an-

other level; and (c) neither accept nor reject the object but opt for

a deferment. The primary advantage of applying three-way deci-

sions over two-way decisions is that three-way decisions can choose

some potentially misclassified objects for further-exam, which

may lead to a lower classification error and less misclassification

cost.

For software defect classification task, a two-stage classification

method based on three-way decisions is proposed in this paper. In

the first stage, a base classifier will be trained to compute the con-

ditional probability of each module. After comparing to the thresh-

olds, the modules with acceptance decision are classified into the

defect-prone category, the modules with rejection decision are clas-

sified into the not-defect-prone category, and the left modules with

deferment decisions wait for further-exam. In the second stage, for

deferment modules, several classifiers will be combined as ensem-

bles to provide a two-way decisions result. The experimental results

on NASA data sets show that our proposed method can produce a

higher classification accuracy and less misclassification cost.

For software defect ranking task, a two-stage ranking method is

also proposed in this paper. In the first stage, all modules will be

classified into three regions based on three-way decisions. In the fol-

lowing stage, a dominance relation rough set based algorithm will be

introduced to rank the modules in each region, respectively. Several

comparing experimental results validate the efficiency of our pro-

posed method.

The rest of this paper is organized as follows. Some related work of

software defect classification, software defect ranking, and three-way

decisions are reviewed in Section 2. Section 3 presents the two-stage

software defect classification method based on three-way decisions.

Section 4 gives the two-stage software defect ranking method. All ex-

periments are discussed in Section 5. Finally, we draw the conclusion

in Section 6.

2. Related work

2.1. Software defect classification

An import work in software defect classification task is to con-

struct defect-related feature space. For the defect-related features,

many approaches have been proposed based on diverse information

[16], such as code metrics [56], process metrics [23], previous defects

[38] and so on [1,60].

Several individual studies reported that LOC data performs well

in software defect prediction [77,83]. D’Ambros et al. [14] reported

that change coupling correlates with defects. Nagappan and Ball [55]

applied code churn together with dependency metrics to predict

defect-prone modules. Khoshgoftaar and Seliya [35] considered 14

process metrics in their paper. Weyuker et al. [64] constructed a

defect-count prediction model using a number of process measures

in addition to structural measures. Besides existing studies which

considered different features, some researches also focused on the

feature selection on sets of metrics seems to improve the perfor-

mance [7,32,50,62].

Another important work in software defect classification task is

the construction or selection of the classification models or meth-

ods. Many statistical models and machine learning methods were

applied in existing studies. Olague et al. [58] applied logistic regres-

sion to predict defects. Mizuno and Kikuno [54] reported that Or-

thogonal Sparse Bigrams Markov models were best suited to defect

prediction based on their study. Bibi et al. [6] applied Regression

via Classification method in software defect prediction. Khoshgof-

taar et al. [37] built a classification tree using TREEDISC algorithm

to predict whether a module was likely to have defects discovered

by customers, or not, based on software product, process, and execu-

tion metrics. Classical machine learning algorithms were also widely

used for software defect prediction such as Naive Bayes [53], Random

Forests [52], and C4.5 [39].

Some comparison works among different methods were also

studied by many researchers. Briand et al. [10] compared traditional

regression techniques with multivariate adaptive regression splines.

Khoshgoftaar and Seliya [36] compared 7 models in their work, and

these models were evaluated against each other by comparing a mea-

sure of expected misclassification cost. Vandecruys et al. [63] com-

pared ant colony optimization against C4.5, SVM, logistic regression,

K-nearest neighbour, RIPPER and majority vote. Kanmani et al. [31]

compared two variants of artificial neural networks against logistic

regression and discriminant analysis. Guo et al. [20] compared 27

modeling techniques through the WEKA tool. Arisholm et al. [2] re-

ported that their comprehensive performance comparison revealed

no predictive differences between the 8 modeling techniques they

investigated. Catal [12] reported that Random Forests provided the

best prediction performance for large data sets and Naive Bayes was

the best prediction algorithm for small data sets in terms of AUC eval-

uation parameter.

More literature reviews of existing studies on software defect clas-

sification techniques can be found in [2,11,12,22,65].

2.2. Software defect ranking

A scenario that is more useful in practice is to rank the classes by

the predicted number of defects they will exhibit [16]. Given a pre-

dicted rank-order, one can focus on the top of the list due to the limi-

tation of testing resources.

Many researches on ranking methods have been done. Based on

their study at Ericsson, Ohlsson and Alberg [57] suggested that it

was possible to predict the most defect-prone modules before cod-

ing has started. Khoshgoftaar and Allen [33] introduced a module-

order model for defect prediction, and found that module-order

models gave management more flexible reliability enhancement

strategies than classification models. Ostrand et al. [5,59] predicted

the expected number of defects by a negative binomial regression

model, and then produced a predicted ranking of the units from

most faulty to least faulty. Based on their ranking result, they could

focus on the top N% of the files only [60]. Yang et al. [67] pro-

posed a learning-to-rank algorithm for constructing defect prediction

models.

Some researchers also considered the problem of how to measure

the ranking performance. D’Ambros et al. [15] applied Spearman’s

correlation coefficient between the list of classes ranked by num-

ber of predicted defects and number of actual defects to measure the

performance. In their further study [16], cumulative lift charts was

employed as the evaluation measure. Weyuker et al. [65] defined a

fault-percentile-average metric. Several comparison studies between

different ranking methods on different performance measures were

also reviewed in [65,66].



Download English Version:

https://daneshyari.com/en/article/402204

Download Persian Version:

https://daneshyari.com/article/402204

Daneshyari.com

https://daneshyari.com/en/article/402204
https://daneshyari.com/article/402204
https://daneshyari.com

