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a b s t r a c t

We propose a new clustering algorithm based on the evidential K nearest-neighbor (EK-NN) rule. Starting
from an initial partition, the algorithm, called EK-NNclus, iteratively reassigns objects to clusters using
the EK-NN rule, until a stable partition is obtained. After convergence, the cluster membership of each
object is described by a Dempster–Shafer mass function assigning a mass to each cluster and to the whole
set of clusters. The mass assigned to the set of clusters can be used to identify outliers. The method can be
implemented in a competitive Hopfield neural network, whose energy function is related to the plausi-
bility of the partition. The procedure can thus be seen as searching for the most plausible partition of the
data. The EK-NNclus algorithm can be set up to depend on two parameters, the number K of neighbors
and a scale parameter, which can be fixed using simple heuristics. The number of clusters does not need
to be determined in advance. Numerical experiments with a variety of datasets show that the method
generally performs better than density-based and model-based procedures for finding a partition with
an unknown number of clusters.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Clustering may be defined as the search for groups in data, in an
unsupervised way. Over the years, the initial concepts of hierarchi-
cal and partitional clustering have been extended to the search for
more complex data structures, leading to the notions of fuzzy [2],
possibilistic [19], rough [22], or credal clustering [7,27]. In spite
of the huge amount of work done in this area, the design of com-
putationally efficient algorithms able to reveal an informative
structure in data remains a topic of considerable interest.

In the so-called ‘‘decision-directed” approach to clustering
[page 536] [10], prior knowledge is used to design a classifier,
which is used to label the samples. The classifier is then updated,
and the process is repeated until no changes occur in the labels.
For instance, the well-known c-means algorithm is based on this
principle: here, the nearest-prototype classifier is used to label
the samples, and it is updated by taking as prototypes the centers
of each cluster. The classification EM algorithm [4] is also based on
the same principle, with an arbitrary parametric classifier and
maximum likelihood estimation.

In recent years, new approaches to classification and clustering
using the Dempster–Shafer theory of belief functions [5,31] have
been developed. For supervised classification, one of the most
widely used method is the evidential K-nearest neighbor (EK-NN)
rule [6,42]. Variants of this method have been proposed in
[21,23,24,30,41]. This approach has been successfully applied in
many domains including bioinformatics [32,33,38,39], medical
image processing [3], remote sensing [41], machine diagnosis
[37], process control [34], among others. In unsupervised learning,
the notion of credal partition has been introduced in [7]. In a credal
partition, the member of an object to clusters is described by a
Dempster–Shafer mass function. The ECM algorithm, a c-means-
like algorithm that generates credal partitions, was introduced in
[27]. Variants of this algorithm were proposed in [20,26,40].

In this paper, we introduce a new decision-directed evidential
clustering algorithm based on the EK-NN rule. Starting from an ini-
tial random partition, the label of each sample is updated in turn
using the EK-NN rule. We prove that this algorithm, (called Ek-
NNclus) converges to a fixed point that corresponds, under some
assumptions, to the most plausible partition of the data. We also
show that the algorithm can be implemented in a competitive
Hopfield neural network [15,16], which allows its possible paral-
lelization. The method is simple and depends on a small number
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of easily tunable parameters. In particular, it does not require to fix
the number of clusters in advance. After convergence, one obtains a
credal partition, which is more informative than a fuzzy partition
and allows us to easily detect outliers.

The rest of this paper is organized as follows. The background
on belief functions, the EKNN rule and credal clustering will first
be recalled in Section 2. The new clustering algorithm will then
be introduced and its theoretical properties will be studied in Sec-
tion 3. Finally, experiments will be presented in Sections 4 and 5
will conclude the paper.

2. Background

This section is intended to make the paper self-contained, by
recalling the necessary concepts related to belief functions (Sec-
tion 2.1), the EK-NN rule (Section 2.2) and credal clustering
(Section 2.3).

2.1. Belief functions

The theory of belief functions (also referred to as Dempster–
Shafer, or evidence theory) is a framework for reasoning under
uncertainty based on the explicit representation and combination
of items evidence [5,31]. Let us assume that we are interested in
the value of some variable x taking values in a finite domain X,
called the frame of discernment. Uncertain evidence about x may
be represented by a mass function m on X, defined as a function
from the powerset of X, denoted as 2X, to the interval ½0;1�, such
that mð;Þ ¼ 0 andX
A#X

mðAÞ ¼ 1: ð1Þ

Each number mðAÞ is interpreted as the probability that the evi-
dence supports exactly the assertion x 2 A (and no more specific
assertion), i.e., the probability of knowing that x 2 A, and nothing
more. In particular, mðXÞ is the probability that the evidence tells
us nothing about x, i.e., it is the probability of knowing nothing.
A subset A ofX such thatmðAÞ – 0 is called a focal set ofm. The mass
function for which X is the only focal set is said to be vacuous; it
represent total ignorance.

To each normalized mass function m, we may associate belief
and plausibility functions from 2X to ½0;1� defined as follows,

BelðAÞ ¼
X
B#A

mðBÞ ð2aÞ

PlðAÞ ¼
X
B\A–;

mðBÞ; ð2bÞ

for all A#X. These two functions are linked by the relation
PlðAÞ ¼ 1� BelðAÞ, for all A#X. Each quantity BelðAÞ may be inter-
preted as the probability that the assertion x 2 A is implied by
the evidence, while PlðAÞ is the probability that this assertion is
not contradicted by the evidence. The function pl : X! ½0;1� that
maps each element X of X to its plausibility plðXÞ ¼ PlðfXgÞ is called
the contour function associated to m.

A key idea in Dempster–Shafer theory is that beliefs are elabo-
rated by aggregating independent items of evidence. Assume that
we have two pieces of evidence represented by mass functions
m1 andm2 on the same frame of discernment X. If one piece of evi-
dence tells us that x 2 A and the other source tells us that x 2 B
for some non-disjoint subsets A and B of X, and if both sources
are reliable, then we know thatx 2 A \ B. Under the independence
assumption, the probabilities m1ðAÞ and m2ðBÞ should be multi-
plied. If, however, A and B are disjoint, we can conclude that the
interpretations ‘‘x 2 A” and ‘x 2 B” cannot hold jointly, and the
probabilities must be conditioned to eliminate such pairs of inter-

pretations. This line of reasoning leads to the following combina-
tion rule, referred to as Dempster’s rule [31],

ðm1 �m2ÞðAÞ ¼ 1
1� j

X
B\C¼A

m1ðBÞm2ðCÞ ð3aÞ

for all A#X;A – ; and ðm1 �m2Þð;Þ ¼ 0, where

j ¼
X
B\C¼;

m1ðBÞm2ðCÞ ð3bÞ

is the degree of conflict betweenm1 andm2. If j ¼ 1, there is a logical
contradiction between the two pieces of evidence and they cannot
be combined. Dempster’s rule is commutative, associative, and it
admits the vacuous mass function as neutral element.

Whereas the computation of the full combined mass function
m1 �m2 may be prohibitive in very large frames of discernment,
the corresponding contour function can be computed in time pro-
portional to the size of the frame, using the following property,

pl1 � pl2 ¼
pl1pl2
1� j ; ð4Þ

where pl1 and pl2 are the contour functions of two mass functions
m1 and m2, and the same symbol � is used for mass functions
and contour functions.

2.2. EK-NN rule

Consider a classification problem in which an object o has to be
classified in one of c groups, based on its distances to n objects in a
dataset. Let X ¼ fx1; . . . ;xcg be the set of groups, and dj the dis-
tance between the object to be classified and object oj in the data-
set. If object oj belongs to group xkðjÞ, then the knowledge that
object o is at a distance dj from oj is a piece of evidence that can
be represented by the following mass function on X,

mjðfxkðjÞgÞ ¼ aj; ð5aÞ
mjðXÞ ¼ 1� aj; ð5bÞ
with

aj ¼ uðdjÞ; ð5cÞ
where u is a non-increasing mapping from ½0;þ1Þ to ½0;1�, such
that

lim
d!þ1

uðdÞ ¼ 0: ð6Þ

According to (5), the mass function mj has two focal sets: the class
xkðjÞ of oj, and X. It becomes vacuous when dj becomes infinitely
large. In [6], it was proposed to choose u as uðdjÞ ¼ a0 expð�ckdjÞ
for some constants a0 and ck. Considering the distances to the n
objects in the database as independent pieces of evidence, the n
mass function mj can then be combined by Dempster’s rule to yield
the combined mass function

m ¼ m1 �m2 � � � � �mn: ð7Þ
For computational reasons, the mass functions mj for objects oj that
are very dissimilar to object o are nearly vacuous and can be
neglected. A useful heuristic is to consider only the K nearest neigh-
bors of object o in the database. Denoting by NK the set of indices of
these nearest neighbors, the combined mass function thus becomes

: ð8Þ

If a decision has to be made, one can then assign object o to the class
xk with the highest plausibility. We can remark that, to make a
decision, we need not compute the combined mass function m
explicitly. The contour function plj corresponding to mj in (5) is
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