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a b s t r a c t

In this paper, we propose a novel sparse and robust nonparallel hyperplane classifier, named Ramp loss
Nonparallel Support Vector Machine (RNPSVM), for binary classification. By introducing the Ramp loss
function and also proposing a new non-convex and non-differentiable loss function based on the e-insen-
sitive loss function, RNPSVM can explicitly incorporate noise and outlier suppression in the training pro-
cess, has less support vectors and the increased sparsity leads to its better scaling properties. The
non-convexity of RNPSVM can be efficiently solved by the Concave–Convex Procedure and experimental
results on benchmark datasets confirm the effectiveness of the proposed algorithm.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Support vector machines (SVMs), rooted in statistical learning
theory (SLT), are computationally powerful tools for pattern classi-
fication [1–5]. Recently, a branch of SVM, nonparallel hyperplane
SVM, is developed and has attracted many interests. The represen-
tative algorithms include the generalized eigenvalue proximal sup-
port vector machine (GEPSVM) [6] and the twin support vector
machine (TWSVM) [7]. For the binary classification problem,
TWSVM seeks two nonparallel proximal hyperplanes such that
each hyperplane is closer to one of the two classes and is at least
one distance from the other. It is implemented by solving two
smaller quadratic programming problems (QPPs) instead of a lar-
ger one, which increases the TWSVM training speed by approxi-
mately fourfold compared to that of standard SVM. TWSVMs
have been studied extensively [8–23]. Among the extensions of
TWSVMs, the nonparallel support vector machine (NPSVM)
[21,22] are superior theoretically and overcomes several draw-
backs of the existing TWSVMs.

For the standard SVMs, the convex loss functions such as the
Hinge loss function are applied, then the convex models are con-
structed and many convex optimization techniques have been
employed to solve them [15,24–28]. However, researchers have

shown that classical SVMs are sensitive to the presence of outliers
and yield poor generalization performance, since the outliers tend
to have the largest margin losses according to the character of the
convex loss functions, then are always playing dominant roles in
determining the decision hyperplane. There are several methods
to construct the robust models [29–36], of which the Ramp loss
function has been investigated widely in the theoretical literature
in order to improve the robustness of SVMs [34,36]. They con-
structed a Ramp loss support vector machine (RSVM) by taking
the Ramp loss instead of the Hinge loss in the classical SVM, the
Ramp loss function limits its maximal loss value distinctly and
can put definite restrictions on the influences of outliers so that
it is much less sensitive to their presence. However, it will also
cause the objective of SVMs losing convexity, as a consequence,
the concave–convex programming (CCCP) procedure is applied to
solves a sequence of convex problems to produce faster and spar-
ser SVMs.

For the NPSVM, the Hinge loss function and e-insensitive loss
function are applied [22], similarly NPSVM will be also sensitive
to the presence of outliers according to the character of the convex
loss functions. In this paper, inspired by RSVM, we introduce the
Ramp loss function and also propose a new non-convex and
non-differentiable loss function based on the e-insensitive loss
function to NPSVM, to construct a novel robust NPSVM, termed
as RNPSVM. Compared with the original NPSVM [22], RNPSVM
can explicitly incorporate noise and outlier suppression in the
training process, has less support vectors and the increased
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sparsity leads to its better scaling properties. RNPSVM is
non-convex and the CCCP procedure is applied to solve a sequence
of convex QPPs. Experimental results on benchmark datasets con-
firm the effectiveness of the proposed algorithm.

The rest of this paper is organized as follows. Section 2 briefly
dwells on the Hinge loss SVM, Ramp loss SVM, CCCP procedure
and TWSVMs. Section 3 proposes the RNPSVM and discusses its
properties. Section 4 deals with experimental results and
Section 5 contains concluding remarks.

2. Background

In this section, we briefly introduce the Hinge loss SVM, Ramp
loss SVM, CCCP procedure and TWSVMs (the standard TWSVM
and an improved TWSVM: NPSVM).

2.1. Hinge loss SVM

Consider the binary classification problem with the training set

T ¼ fðx1; y1Þ; . . . ; ðxl; ylÞg ð1Þ
where xi 2 Rn; yi 2 Y ¼ f1;�1g; i ¼ 1; . . . ; l, the standard SVM relies
on the classical Hinge loss function (see Fig. 1(b))

HsðzÞ ¼maxð0; s� zÞ ð2Þ

where the subscript s indicates the position of the Hinge point, to
penalize examples classified with an insufficient margin and results
in the following primal problem

min
w;b

1
2
kwk2 þ C

Xl

i¼1

H1ðyif ðxiÞÞ; ð3Þ

where f ðxÞ is the decision function with the form of
f ðxÞ ¼ ðw �UðxÞÞ þ b, and Uð�Þ is the chosen feature map, often
implicitly defined by a Mercer kernel Kðx; x0Þ ¼ ðUðxÞ �Uðx0ÞÞ [3].

Due to the application of the Hinge loss, standard SVM has the
sensitivity to outlier observations since they will normally have the
largest hinge loss, thus the decision hyperplane is inappropriately
drawn toward outlier samples so that its generalization perfor-
mance is degraded [37]. Another property of the Hinge loss func-
tion is that the number of Support Vectors (SVs) scales linearly
with the number of examples [38], and since the SVM training
and recognition times grow quickly with the number of SVs, it is
obviously that SVMs cannot deal with very large datasets.

2.2. Ramp loss SVM

In order to increase the robustness of SVM and avoid converting
the outliers into SVs, the Ramp loss function [34] (see Fig. 1(a)),
also known as the Robust Hinge loss

RsðzÞ ¼
0; z > 1
1� z; s 6 z 6 1
1� s; z < s

8><
>: ð4Þ

was introduced to replace the Hinge loss function, by making the
loss function flat for scores z smaller than a predefined value
s < 1. RsðzÞ can be decomposed into the sum of the convex Hinge
loss and a concave loss (see Fig. 1(c)),

RsðzÞ ¼ H1ðzÞ � HsðzÞ; ð5Þ
therefore the primal problem of the Ramp loss SVM (RSVM) is for-
mulated as

min
w;b

1
2
kwk2þC

Xl

i¼1

Rsðyif ðxiÞÞ¼
1
2
kwk2þC

Xl

i¼1
H1ðyif ðxiÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

convex

�C
Xl

i¼1
Hsðyif ðxiÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

concave

;

ð6Þ
which can be solved by the ‘‘Concave–Convex Procedure’’ (CCCP)
[39].

2.3. The Concave–Convex Procedure

The CCCP procedure is closely related to the ‘‘Difference of
Convex’’ (DC) methods, which were successfully applied to a lot
of different and various non-differentiable non-convex optimiza-
tion problems especially in the large-scale setting [40,41]. For such
problem (6) with the objective function written as the sum of a
convex part uðxÞ and a concave part vðxÞ, i.e. uðxÞ þ vðxÞ, the
CCCP algorithm is an iterative procedure that solves a sequence
of convex programs

xtþ1 ¼ arg min
x
fuðxÞ þ x>rvðxtÞg: ð7Þ

Ref. [34] proposed the CCCP procedure for the RSVM as follows:

Algorithm 1 (CCCP for RSVM)

(1) Initialize b0 ¼ ðb0
1; � � � ; b0

l Þ
>

, set t ¼ 1;
(2) Compute at by solving the following convex problem

min
a

1
2

Xl

i¼1

Xl

j¼1

aiajyiyjKðxi; xjÞ �
Xl

i¼1

ai;

s: t:
Xl

i¼1

yiai ¼ 0;

� bt�1
i 6 ai 6 C � bt�1

i ; i ¼ 1; . . . ; l;

ð8Þ

where Kðx; x0Þ is the kernel function;
(3) Compute bt and construct the decision function as

f tðxÞ ¼
Xl

i¼1

yiat
i Kðxi; xÞ þ bt

; ð9Þ

(4) Compute bt
i ; i ¼ 1; . . . ; l as

bt
i ¼

C; yif
tðxiÞ < s

0; otherwise

(
ð10Þ

(5) If bt ¼ bt�1, end; else set t ¼ t þ 1, go to step (2).

2.4. TWSVM

Consider the binary classification problem with the training set

T ¼ fðx1;þ1Þ; . . . ; ðxp;þ1Þ; ðxpþ1;�1Þ; . . . ; ðxpþq;�1Þg; ð11Þ

where xi 2 Rn; i ¼ 1; . . . ;pþ q, the TWSVM generates two nonparal-
lel hyperplanes fþðxÞ ¼ ðwþ � xÞ þ bþ ¼ 0 and f�ðxÞ ¼ ðw� � xÞ
þb� ¼ 0, instead of a single one as in conventional SVMs, by solving
a pair of smaller-sized QPPs

min
wþ ;bþ

1
2

Xp

i¼1

ðfþðxiÞÞ
2 þ C1

Xpþq

j¼pþ1

H1ð�fþðxjÞÞ; ð12Þ

and

min
w� ;b�

1
2

Xpþq

i¼pþ1

ðf�ðxiÞÞ2 þ C2

Xp

j¼1

H1ðf�ðxjÞÞ ð13Þ

where Ci; i ¼ 1;2 are the penalty parameters.
For the nonlinear case, two kernel-generated surfaces instead of

hyperplanes are considered and two other primal problems are
constructed.
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