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a b s t r a c t

In this paper, we propose a novel supervised manifold learning approach, supervised locality discrimi-
nant manifold learning (SLDML), for head pose estimation. Traditional manifold learning methods focus
on preserving only the intra-class geometric properties of the manifold embedded in the high-dimen-
sional ambient space, so they cannot fully utilize the underlying discriminative knowledge of the data.
The proposed SLDML aims to explore both geometric structure and discriminant information of the data,
and yields a smooth and discriminative low-dimensional embedding by adding the local discriminant
terms in the optimization objectives of manifold learning. Moreover, for efficiently handling out-of-sam-
ple extension and learning with the local consistency, we decompose the manifold learning as a two-step
approach. We incorporate the manifold learning and the regression with a learned discriminant mani-
fold-based projection function obtained by discriminatively Laplacian regularized least squares. The
SLDML provides both the low-dimensional embedding and projection function with better intra-class
compactness and inter-class separability, therefore preserves the local geometric structures more
effectively. Meanwhile, the SLDML is supervised by both biased distance and continuous head pose angle
information when constructing the graph, embedding the graph and learning the projection function. Our
experiments demonstrate the superiority of the proposed SLDML over several current state-of-art
approaches for head pose estimation on the publicly available FacePix dataset.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Head pose estimation is an integral component of multi-view
face recognition systems, driver attention monitoring and other
human-centered computing applications. It already becomes a
hot research topic in computer vision applications [1]. Currently,
the state-of-art methods for head pose estimation have adopted
intensively the technique of manifold learning and embedding
[2]. The technique is based on the idea that the dimensionality of
the dataset is only artificially high, and it may be described as a
function of only a few underlying parameters. This technique
attempts to uncover these parameters in order to find a low-
dimensional representations of the data. That is to say, the data
points are actually sampled from a low-dimensional manifold that
is embedded in a high-dimensional ambient space. For human
head pose estimation, a fundamental assumption of using this
technique is that face images with varying pose angles are data
points that lies on a smooth low-dimensional manifold constrained
by the head pose variations. It is always believed that the manifold

models the nonlinear and continuous variations of face appearance
with head pose angle, and if learned properly, new face images can
then be embedded in the low-dimensional space to estimate the
head poses.

The manifold learning includes nonlinear types, such as Isomet-
ric Feature Mapping (ISOMAP) [3], Laplacian Eigenmap (LE) [4] and
Locally Linear Embedding (LLE) [5], and linear types, such as Local-
ity Preserving Projection (LPP) [6] and Neighborhood Preserving
Embedding (NPE) [7], etc. Typically, a quadratic objective derived
from a neighborhood graph is set up and solved for its leading
eigenvectors.

The nonlinear manifold learning assumes that the underlying
structure of the real data is often highly nonlinear and hence can-
not be accurately approximated by linear manifolds. It aims to pre-
serve certain geometric properties among neighboring data points
in the process of projecting the high-dimensional data to low-
dimensional embedding. There are various different geometric
properties that include the pairwise geodesic distances (Isometric
Feature Mapping (ISOMAP) [3]), the local convexity (Local Linear
Embedding (LLE) [5]), the local distance (Laplacian Eigenmap (LE)
[4]). By incorporating prior knowledge of class labels, manifold
learning methods also perform pattern classification in the feature
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space. Mostly, above algorithms are formulated as convex optimi-
zation problems. These models generally assume that the low-
dimensional manifold is isometric to a convex subset of Euclidean
space, and there may exist problems of high curvature of the man-
ifold and out-of-sample extension for non-isometric manifold [8].

For nonlinear manifold learning a critical issue is the lack of a
direct mapping from the input space to the manifold space, which
limits the applicability of these methods. One solution to this issue
was presented in [9], where the distance matrix was viewed as a
kernel and some new points were embedded by using the Nystrom
approximation. Unfortunately, it is a rather complex process, and
time-consuming does not have a clear interpretation for the LLE
[5] case. More recent linear manifold learning approaches (these
can be thought as the subspace learning [10]), such as LPP [6]
and NPE [7], try to overcome the out-of-sample extension problem
by performing a linear approximation of the underlying manifold.
The fundamental idea behind these methods is that, using a linear
map manifolds can be approximated reasonably well within a local
neighborhood, even though they are nonlinear structures. The ben-
efits of linear approximations are some savings in computational
time.

The disadvantage of the nonlinear manifold learning makes the
out-of-sample extension tricky, while that of linearized approaches
can offer only an approximation of the underlying manifold struc-
ture. Hence, we propose a novel manifold learning approach to
overcome the two issues. We decompose the manifold learning
as a two-step approach: graph embedding [11] for the underlying
manifold learning and the regression for the learned manifold-
based projective function learning. The regression can construct
the direct map obtained by using discriminatively Laplacian regu-
larized least square to project the training data and new data. By
using the regression as a process of building the projection func-
tion rather than direct linear transformation from the input space
to the low-dimensional embedding, different kinds of regularizers
can be naturally incorporated.

In particular, Locality Sensitive Discriminant Analysis (LSDA)
[12] has been proposed recently to exploit both geometric and dis-
criminant information simultaneously in manifold learning. LSDA
[12] incorporates discriminant information based on the graph
Laplacian and demonstrated better performance than some other
manifold learning methods. It constructs intra-class graph and
inter-class graph to model the local neighborhood relationship of
the data according to their labels. By making the margin maximal
among data points of different classes in each local neighborhood,
it can perform the discriminative ability for classification in the
reduced subspace. Intuitively, we incorporate the discriminant
knowledge as the supplement into the objective functions of man-
ifold learning in order to find the optimal low-dimensional embed-
ding for estimating head poses accurately.

Furthermore, in the regression stage of the proposed two-step
approach, we develop discriminatively Laplacian regularized least
square, and this is partly inspired by discriminatively regularized
least square [13]. We directly embed the discriminative informa-
tion as well as the local geometry of the data based on the graph
Laplacian in the regularization term such that it can explore as
much underlying knowledge as possible.

Meanwhile, some head pose estimation methods are proposed
based on manifold learning. Raytchev applied ISOMAP-based man-
ifold learning technique for user-independent pose estimation
[14]. Fu and Huang presented an appearance-based strategy for
head pose estimation using supervised Graph Embedding (GE)
analysis [15]. To incorporate the pose labels that are usually avail-
able during the training phase, Balasubramanian proposed the
Biased Manifold Embedding framework (BME) [16] for head pose
estimation, which uses biased distance measurement to determine
k nearest neighbors such that the head pose angle information can

be incorporated as the prior knowledge for estimating head pose
more accurately. BME [16] uses a Generalized Regression Neural
Network (GRNN) to learn the nonlinear mapping for dealing with
out-of-sample data points, and applies linear multivariate regres-
sion to estimate the pose. In [17], by incorporating prior knowl-
edge of head pose angle, BenAbdelkader proposed Supervised
Manifold Learning (SML) framework for head pose estimation,
and uses nonlinear mapping, cubic smooth splines and support
vector regression, to estimate head pose angle from embedded face
images. SML [17] performs better than other head pose estimation
methods by incorporating continuous head pose angle information
in the process of graph construction and graph embedding. They all
demonstrated their effectiveness for head pose estimation. How-
ever, their methods fail to efficiently handle out-of-sample exten-
sion data points. In addition, they use a nonlinear mapping (e.g.
GRNN and cubic smooth splines) to estimate the head poses.

Instead, we propose a novel manifold learning approach, super-
vised locality discriminant manifold learning (SLDML), which
decomposes the manifold learning as a two-step approach: the
graph embedding stage and the regression stage. Firstly, we con-
struct an intra-class graph Gw and an inter-class graph Gb according
to their head pose labels. In this way, the geometric structures and
discriminant knowledge of the data can be accurately characterized
by the two graphs. Based on the graph Laplacian, we then add the
local discriminant term constructed by minimizing the margin of
data points from Gw and maximizing the margin of data points from
Gb in the optimization objective of manifold learning. Secondly, we
develop discriminatively Laplacian regularized least squares which
map the data to the low-dimensional reduced space for directly
out-of-sample extension more effectively. Moreover, we incorpo-
rate continuous head pose angle information into all stages of the
manifold learning. Meanwhile, for a new face image, we first embed
it in the low-dimensional space where we determine its k nearest
neighbors, and then estimate the head pose angles.

The rest of this paper is organized as follows. Section 2
describes our supervised locality discriminant manifold learning
process. Experiments on public dataset are presented to show
the robustness and superiority of our method over other state-of-
the-art methods in Section 3. Finally, Section 4 concludes our work
with a summary and introduces the future work.

2. Proposed method

In this section, we introduce supervised locality discriminant
manifold learning approach. Specifically, for a given data set of n
points in D-dimensional space, we denote X ¼ ½ðx1; z1Þ;
ðx2; z2Þ; . . . ; ðxn; znÞ�;xi 2 RD, where zi is label (i.e. head pose angle)
of xi. We wish to reduce the dimensionality of this data, and
assume only that the data lies on a d-dimensional manifold
embedded into RD, where d < D. Moreover, we assume that the
manifold is given by a single coordinate chart f. We can now
describe the problem formally: given data points
X ¼ ½x1;x2; . . . ;xn� 2 RD that lie on a d-dimensional manifold M that
can be described by a single coordinate chart f : M # Rd, find
Y ¼ ½y1; y2; . . . ; yn� 2 Rd, where yi ¼ f ðxiÞ; i ¼ 1; . . . ;n. Note that
y ¼ ½y1; y2; . . . ; yn� 2 R1. Solving this problem is referred to as man-
ifold learning, since we are trying to ‘‘learn’’ a manifold from a set
of points. Currently, manifold learning can be cast in terms of
graph construction and graph embedding based on the specific
intrinsic graph that encodes certain geometric properties of the
data [11].

2.1. Biased graph construction

Graph construction is mostly predefined artificially, and k near-
est neighbors criterion is a common way to construct the graph for
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