
Cost-sensitive learning for defect escalation

Victor S. Sheng a,c,⇑, Bin Gu b, Wei Fang c, Jian Wu d

a Jiangsu Engineering Center of Network Monitoring, NanJing University of Information Science & Technology, NanJing, China
b Department of Medical Biophysics, Western University, London, Ontario, Canada
c Computer Science Department, University of Central Arkansas, Conway, AR, USA
d The Institute of Intelligent Information Processing and Application, Soochow University, Suzhou, China

a r t i c l e i n f o

Article history:
Received 2 September 2013
Received in revised form 12 April 2014
Accepted 21 April 2014
Available online 30 April 2014

Keywords:
Software defect escalation prediction
Cost-sensitive learning
Data mining
Defect escalation
Machine learning

a b s t r a c t

While most software defects (i.e., bugs) are corrected and tested as part of the prolonged software devel-
opment cycle, enterprise software venders often have to release software products before all reported
defects are corrected, due to deadlines and limited resources. A small number of these reported defects
will be escalated by customers whose businesses are seriously impacted. Escalated defects must be
resolved immediately and individually by the software vendors at a very high cost. The total costs can
be even greater, including loss of reputation, satisfaction, loyalty, and repeat revenue. In this paper, we
develop a Software defecT Escalation Prediction (STEP) system to mine historical defect report data and pre-
dict the escalation risk of current defect reports for maximum net profit. More specifically, we first
describe a simple and general framework to convert the maximum net profit problem to cost-sensitive
learning. We then apply and compare four well-known cost-sensitive learning approaches for STEP.
Our experiments suggest that cost-sensitive decision trees (CSTree) is the best methods for producing
the highest positive net profit.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Building large enterprise software is generally a highly complex
and lengthy process, during which numerous software defect
reports can exist and some of them may not be resolved when
the software products are released (usually against a tight dead-
line) [14]. For example, it may be difficult to reproduce a reported
error condition; there may be conflicts between desired product
behavior and applicable standards; there may be uncertainty as
whether a requested change is related to a defect or a request for
enhancement; or it may be difficult to assess which of several
products in a given environment may cause a reported error condi-
tion. Enterprise software vendors often have in place sophisticated
processes for evaluating defect reports before release. This process
entails a careful human expert review of each known bug, evalua-
tion of trade-offs and delicate judgment. Still, after product release
a small number of defects become ‘‘escalated’’ by customers,
whose businesses are seriously impacted. Escalations of software
defects require software vendors’ immediate management atten-

tion and senior software engineers’ immediate and continuous
effort to reduce the business or financial loss to the customers.
Therefore, software defect escalations are costly to the software
vendors, with the associated costs amounting to millions of dollars
each year. In addition, software defect escalations result in loss of
reputation, satisfaction, loyalty and repeat revenue of customers,
incurring extremely high costs in the long run for the enterprise
software vendors [3,5].

In this paper, we further investigate a possible solution of devel-
oping a Software defecT Escalation Prediction (STEP) system. It is an
extension of our previous work [28]. The objective of the STEP sys-
tem is to assist human experts in the review process of software
defect reports by modeling and predicting escalation risk using
data mining technologies [4,15,20]. If the STEP system can accu-
rately predict the escalation risk of known defect reports, then
some escalations can be prevented by correcting those high-risk
defect reports with a much lower cost within the software devel-
opment and testing cycle before release. This would save a huge
amount of money for the enterprise software vendors [9].

Indeed, the business goal of STEP (and many industrial applica-
tions using data mining) is to maximize the net profit, that is, the
difference in the cost of defect resolution before and after introduc-
ing the data mining solution, as opposed to the usual data-mining
measures such as accuracy, AUC (area under the ROC curve), mis-
classification cost [41], lift, or recall and precision combinations

http://dx.doi.org/10.1016/j.knosys.2014.04.033
0950-7051/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Jiangsu Engineering Center of Network Monitoring,
NanJing University of Information Science & Technology, NanJing, China. Tel.: +1
5014505839.

E-mail addresses: ssheng@uca.edu (V.S. Sheng), jsgubin@nuist.edu.cn (B. Gu),
hsfangwei@sina.com (W. Fang), jianwu@suda.edu.cn (J. Wu).

Knowledge-Based Systems 66 (2014) 146–155

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2014.04.033&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2014.04.033
mailto:ssheng@uca.edu
mailto:jsgubin@nuist.edu.cn
mailto:hsfangwei@sina.com
mailto:jianwu@suda.edu.cn
http://dx.doi.org/10.1016/j.knosys.2014.04.033
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

[26]. However, it is clear that the net profit is not equivalent to any
of these standard machine learning measures, and we have found
little previous work that directly optimizes the net profit as the
data mining effort.

In this paper, we first set up a simple framework in which the
problem of maximum net profit can be converted to minimum
total cost in cost-sensitive learning under certain conditions (see
Section 2). We then apply and compare four well-known cost-sen-
sitive learning algorithms on a defect report dataset to see how
they perform, in terms of maximum net profit (Section 5). Our
results (see Mini-Summary in Sections 5.5 and 6) suggest that
cost-sensitive decision tree is best for producing the highest posi-
tive net profit. Conclusions drawn in this study not only help enter-
prise software vendors to improve profit in software production by
reducing the cost of escalations, but also provide some general
guidelines for mining imbalanced datasets [25,36,46] and cost-sen-
sitive learning.

To the best of our knowledge, applying data mining for predict-
ing software defect escalations is novel in software business. Soft-
ware development is an extremely complex process, and hundreds
or even thousands of defect reports may exist within a large enter-
prise software product. Predicting and prioritizing defect reports
for evaluation and resolution is crucial in software engineering
development. Our data-mining based STEP is the first and impor-
tant step toward improving the effectiveness and efficiency of this
process through automated analysis. As we will show in Sections
5–7, our STEP performs quite well. The system is currently
deployed with product groups of a software vendor, and the sys-
tem has quickly become a popular tool for prioritization.

In summary, this is a real-world application paper. It has four
main contributions as follows. (1) It proposes a software defect
escalation prediction system. (2) It converts a maximum net profit
problem in software engineering to cost-sensitive learning. (3) It
introduces negative values in the cost matrix, which are corre-
sponding to the benefit obtained from correct classification. This
is seldom discussed in existing cost-sensitive learning algorithms,
which focus on the cost of misclassification. (4) The comparison
studies of different approaches shed light for data mining practitio-
ners on algorithm selection and for data mining researchers to see
the performance of different techniques on real-world applications.

The paper is organized as follows: in the next section, we
describe the maximum net profit and its relationship with cost-
sensitive learning. Section 3 reviews several popular approaches
of cost-sensitive learning. Then Section 4 describes an STEP data-
set, and Section 5 compares different cost-sensitive learning
approaches for maximum net profit. In Section 6, we further inves-
tigate the performance of different approaches on five real-world
datasets. Section 7 discusses the deployment of our work, and Sec-
tion 8 concludes the paper.

2. Maximum net profit and cost-sensitive learning

As we have discussed in the Introduction section, correcting
defects after an escalation occurs is much more expensive than
correcting defects before they become escalated. If we treat defect
escalations as positive examples, then the cost of false negative FN
(correcting an escalated defect) should cost many times more than
the cost of false positive FP (correcting a non-escalated defect). If
the cost of FN and FP is known, like in our study, then this would
seem to be a straightforward cost-sensitive learning problem, in
which the weighted misclassification costs should be minimized.

The problem is not that simple. The goal of the STEP (software
defect escalation prediction) system (and many other real-world
data mining applications) is to maximize the net profit after data
mining is deployed. That is, we want to maximize the gain (or dif-

ference) with the data-mining effort compared to the previous
practice. That is, we want to compare the cost (or profit) after
data-mining based STEP is deployed to some default policy before
STEP is deployed [28].

Let us first establish the formula for the net profit. Again we
need to calculate the total cost before and after deploying STEP,
and take the difference of the two to get the net profit. Let us
assume that the cost of correcting an escalated defect after product
release is 7 times as the cost of correcting a defect (non-escalated
or would-be escalated) before product release. We assume that
FN = $7,000, and FP = $1,000 (we did not use the actual numbers
here for confidentiality reasons but the actual cost figures are some
constant factor of the numbers used here). Let us first calculate the
cost after deploying STEP (‘‘gross profit’’). When STEP makes a pre-
diction on a dataset, it will make a number of positive predictions
(predicted escalation) and negative predictions (predicted non-
escalations). These predictions are often not 100% correct, so there
will be certain numbers of true positive (tp), true negative (tn),
false positive (fp), and false negative (fn) cases. If the software ven-
der follows faithfully the STEP’s predictions, it will fix all defects
predicted positively, and ignore all defects predicted negatively.
The cost of correcting all defects predicted positively by STEP is
thus the multiplication of the number of defects predicated posi-
tively and the cost of correcting such a defect; that is, (tp + fp) � FP.
After the software is released, the would-be escalated defects pre-
dicted negatively by STEP (i.e., false negatives fn) will escalate and
must be fixed at a much higher cost of fn � FN. Thus, the total cost
after deploying STEP is the sum of the two costs described above,
plus the cost of the data mining effort (such as the cost of the tool,
and computer and human cost of using the tool). If we ignore the
cost of the data mining effort, then the total cost of deploying STEP
is:

ðtpþ fpÞ � FP þ fn� FN ð1Þ

Assume that the default policy (before deploying STEP) is to
ignore all defect reports (or predict everything negatively) before
software release, and then correct all escalated defects after
release. Then using the same notation, the cost of this default pol-
icy is simply the cost of correcting all escalated defects. That is:

ðtpþ fnÞ � FN: ð2Þ

Thus, the net profit is to subtract (1) from (2). That is:

Net profit ¼ tp� ðFN � FPÞ � fp� FP ¼ 6000� tp� 1000� fp ð3Þ

Again, we obtained the above net profit equation under the
assumption (FN = $7000, and FP = $1000). FN and FP could have dif-
ferent costs under different real-world applications. For example, if
FN = $6000, and FP = $1000, then net profit can be calculated using
5000 � tp � 1000 � fp; if FN = $5000, and FP = $1000, then net
profit can be calculated using 4000 � tp � 1000 � fp.

On the other hand, if the default policy is to correct all of the
defects (predicting everything positively), the cost would be
(tp + fp + tn + fn) � FP. Subtracting (1) from the cost of the correct-
ing-all policy above, the net profit would be: 1000 � tn �
6000 � fn. Again, this net profit formula is based on the assumption
(FN = $7000, and FP = $1000). FN and FP could have different costs
under different applications. For example, if FN = $6000, and
FP = $1000, then net profit can be calculated using 1000 � tn �
5000 � fn; if FN = $5000, and FP = $1000, then net profit can be
calculated using 1000 � tn � 4000 � fn.

In general, the net profit varies with the default policy, and thus,
maximizing net profit may not simply be equivalent to cost-sensi-
tive learning given a cost metric.

However, we will show here that there is a very simple
approach to convert a formula of maximum net profit to
cost-sensitive learning under certain conditions. Cost sensitive

V.S. Sheng et al. / Knowledge-Based Systems 66 (2014) 146–155 147

Download English Version:

https://daneshyari.com/en/article/402336

Download Persian Version:

https://daneshyari.com/article/402336

Daneshyari.com

https://daneshyari.com/en/article/402336
https://daneshyari.com/article/402336
https://daneshyari.com

