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a b s t r a c t

We focus on the problem of constructing functions that are able to measure the degree of consensus for a
set of inputs provided over the unit interval. When making evaluations based on inputs from multiple
criteria, sources or experts, the resulting output can be seen as the value which best represents the indi-
vidual contributions. However it may also be desirable to know the extent to which the inputs agree.
Does the representative value reflect a universal opinion? Or has there been a high degree of tradeoff?
We consider the properties relating to such consensus measures and propose two general models built
component-wise from aggregation functions and fuzzy implications.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Aggregation functions such as the mean and median are used in a
wide range of decision making contexts to summarize a set of inputs
with a single output. They can be used to provide an overall rating for
an item or candidate based on multiple criteria, or to combine the
preferences of experts into a single group evaluation. In some situa-
tions, it may also be informative to have an idea of whether the inputs
agree with one another, or whether the aggregated score is the result
of a compromise between a number of disparate sub-groups.

For instance, suppose some friends provide ratings for three of
the X-men films (shown in Table 1).

As well as comparing the average evaluations, we can also see
that whilst everyone more or less agrees that X-men III was not
very good, and X-Men: First Class was not too bad, there is a lack
of consensus regarding Wolverine.

Consensus measures, that is, functions which give an overall
idea of how much the inputs agree with one another, have been
employed increasingly in decision making contexts. Such measures
have been used in voting and preferences aggregation [1,2,12,20–
23,31,32], for example to describe a set of voters and group them
according to the similarity in their preferences. As with the stan-
dard deviation alongside the mean in statistical summaries, con-
sensus measures can provide an indication of reliability or the
degree to which an overall evaluation reflects the opinions of a
group. As such, they have also been used to inform consensus

reaching processes [3,10,16–18,25–29,38,39,41,40,42,43], where a
minimum level of consensus can be set and a final decision may
not be accepted if the consensus measure output is below this
threshold. The consensus level between the pairwise preferences
of an individual and the group can also be used to make recom-
mendations that will increase the overall agreement between ex-
perts. The work of Tastle et al. has also looked at consensus for a
set of opinions expressed over Likert scales [36].

In this article, we consider the problem of measuring the degree
of consensus given a set of inputs expressed over the unit interval.
We focus on how to formally state the consensus properties con-
sidered in [1,2,20,36] when applied to this setting and then pro-
pose some generalized operators that satisfy these properties
with a suitable choice of components. While our considerations
are contained to real inputs between 0 and 1, our investigations
lay the framework for extensions to other environments such as
lattice inputs. This work continues that begun in [7], where we first
proposed one of the consensus models considered here and com-
pared it with some existing functions in terms of the consensus
properties described in [36].

The paper will be structured as follows. We will firstly outline
the necessary background in aggregation functions and fuzzy
implications in the Preliminaries section. We include the definition
of the Bonferroni mean, the construction of which motivates the
proposed consensus measure. In Section 3, we will bring together
the properties relating to consensus in other settings and adapt
their definitions to the case of inputs expressed over the unit inter-
val. We will include reference to some existing consensus mea-
sures with respect to their satisfaction of the given properties. In
Section 4, we will propose our consensus operators constructed
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from aggregation functions and fuzzy implications. The first of
these is based on aggregating the fuzzy implications of each pair
of inputs, while the second looks at implications between each in-
put and the average of the remaining inputs. We will discuss how
the choice of components affects the satisfaction of consensus
properties defined in the preceding section. We will provide some
final thoughts in the Conclusion.

2. Preliminaries

Our proposed consensus measure is composed of aggregation
functions and fuzzy implications. We will give an overview of the
necessary background on these topics in this section.

2.1. Aggregation functions

The theory of aggregation functions has received considerable
attention in recent years, with many results in terms of under-
standing their properties and potential applications. Recent
monographs dedicated to the topic give an overview of the state-
of-the-art [9,24,37]. Aggregation functions are used to merge
inputs into a single output that is seen to be representative, subject
to given properties. In group decision making, aggregation func-
tions are used to combine the evaluations of the experts into an
overall evaluation for each item or object under consideration.
Inputs and outputs can be considered over different domains,
however we will contain our considerations to the case where both
are expressed over the unit interval.

Definition 1 (Aggregation function). [9,24] A function
f:[0,1]n ? [0,1], n > 1 is called an aggregation function if it is
monotone non-decreasing in each argument and satisfies the
boundary conditions f(0, . . . ,0) = 0 and f(1, . . . ,1) = 1.

Aggregation functions are considered to be averaging when min
(x) 6 f(x) 6max (x), conjunctive when f(x) 6min (x), disjunctive
when max (x) 6 f(x), and mixed otherwise. We note that averaging
aggregation functions are idempotent, i.e. f(t, t, . . . , t) = t, with well
known examples including the arithmetic mean (also sometimes
just referred to as the average) and the median. T-norms and t-con-
orms are the archetypal examples of conjunctive and disjunctive
functions respectively, generalizing the AND and OR operations
of 2-valued logic. An aggregation function f is said to by symmetric
when for all permutations p(i) on {1, . . . ,n} and x 2 [0,1]n it holds
that f(x1,x2, . . . ,xn) = f(xp(1),xp(2), . . . ,xp(n)).

We provide the definition of weighted quasi-arithmetic means,
which generalize a number of well known averaging aggregation
functions.

Definition 2 (Weighted quasi-arithmetic mean). For a strictly
monotone continuous generating function g:[0,1] ? [�1,1] and
weighting vector w, the weighted quasi-arithmetic mean is given
by

QAMwðxÞ ¼ g�1
Xn

i¼1

wigðxiÞ
 !

: ð1Þ

Special cases include weighted arithmetic means,
WAMðxÞ ¼

Pn
i¼1wixi where g(t) = t, weighted power means

PMqðxÞ ¼
Pn

i¼1wix
q
i

� �1=q, where g(t) = tq and weighted geometric
means GðxÞ ¼

Qn
i¼1xwi

i if g(t) = �ln t. The weights wi are usually seen
to indicate the relative importance of a given input source, are non-
negative and sum to one.

The consensus measures we will propose are based on the form
of the Bonferroni mean. It was defined in 1950 [11] and has been
generalized by Yager [44] and others [34,45,8].

Definition 3 (Bonferroni mean). Let p, q P 0 and xi P 0, i = 1, . . . , n.
The Bonferroni mean is the function

Bp;qðxÞ ¼ 1
nðn� 1Þ

Xn

i;j¼1;i–j

xp
i xq

j

 ! 1
pþq

: ð2Þ

By rearranging the terms, the Bonferroni mean can also be
expressed,

Bp;qðxÞ ¼ 1
n

Xn

i¼1

xp
i

1
n� 1

Xn

j¼1;j–i

xq
j

 ! ! 1
pþq

: ð3Þ

In both equations, we have an arithmetic mean which lies in-
side the (p + q)th root. For Eq. (2), the arguments of this mean
are the product pairs xp

i xq
j , while in Eq. (3) we take the product of

each component xi with the arithmetic mean of the inputs when
xi is excluded. The generalized form of the Bonferroni mean pre-
sented in [8] allows for the mean operations to be replaced with
any averaging functions and the product operation with any 2-var-
iate function whose diagonal f(t, t) is invertible.

We will give an overview of fuzzy implications in the following
subsection.

2.2. Fuzzy Implications

Fuzzy implications generalize the classical implication operator
? in two-valued logic. Their properties and applications in fuzzy
systems have also received considerable attention in recent years
(see the monograph [4], edited book [5] and the research papers
[15,6,33] for more detailed background on state-of-the-art results
and applications). We will adopt the following definition.

Definition 4 (Fuzzy implication). [4,33] A function I:[0,1]2 ? [0,1]
is called a fuzzy implication (or implication function) if it is
monotone non-increasing in the first argument, monotone non-
decreasing in the second argument and satisfies the boundary
conditions, I(0,0) = 1, I(1,1) = 1 and I(1,0) = 0.

Implication functions can be defined from aggregation func-
tions and negations. We define a negation as follows.

Definition 5 (Fuzzy negation). [9,4] A function N:[0,1] ? [0,1] is
called a fuzzy negation (or negation function) if it is monotone non-
increasing and satisfies the boundary conditions N(0) = 1, N(1) = 0.

A fuzzy negation is said to be strict if is continuous and strictly
monotone decreasing. A strong negation is strict and involutive, i.e.
N(N(t)) = t.

Negations play an important role in the study of fuzzy implica-
tions as they can be used to consider properties such as
contraposition and define various classes. For example, the
(S,N)-implications are defined with respect to a t-conorm S and a
negation N, and given by I(x,y) = S(N(x),y), while another class,
(Q,L)-implications, are defined with respect to a negation N, a
t-norm T and t-conorm S as I(x,y) = T(N(x),S(x,y)).

Table 1
Overall evaluations based on individual ratings.

Film Trevor Bailey Natasha Josh Average

X-men III 0.3 0.2 0.2 0.4 0.275
Wolverine 0.2 0.3 0.9 0.8 0.55
X-Men: First Class 0.65 0.7 0.65 0.6 0.65
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