Knowledge-Based Systems 55 (2014) 125-139

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Efficient frequent pattern mining based on Linear Prefix tree

@ CrossMark

Gwangbum Pyun?, Unil Yun®*, Keun Ho Ryu”

2 Department of Computer Engineering, Sejong University, Seoul, Republic of Korea
b Department of Computer Science, Chungbuk National University, Cheongju, Republic of Korea

ARTICLE INFO ABSTRACT

Article history:

Received 24 April 2013

Received in revised form 11 October 2013
Accepted 12 October 2013

Available online 24 October 2013

Outstanding frequent pattern mining guarantees both fast runtime and low memory usage with respect
to various data with different types and sizes. However, it is hard to improve the two elements since
runtime is inversely proportional to memory usage in general. Researchers have made efforts to
overcome the problem and have proposed mining methods which can improve both through various
approaches. Many of state-of-the-art mining algorithms use tree structures, and they create nodes
independently and connect them as pointers when constructing their own trees. Accordingly, the
methods have pointers for each node in the trees, which is an inefficient way since they should manage
and maintain numerous pointers. In this paper, we propose a novel tree structure to solve the limitation.
Our new structure, LP-tree (Linear Prefix — Tree) is composed of array forms and minimizes pointers
between nodes. In addition, LP-tree uses minimum information required in mining process and linearly
accesses corresponding nodes. We also suggest an algorithm applying LP-tree to the mining process. The
algorithm is evaluated through various experiments, and the experimental results show that our

Keywords:

Data mining

Frequent pattern mining
Linear tree

Pattern growth
Knowledge discovery

approach outperforms previous algorithms in term of the runtime, memory, and scalability.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

As a part of the association rule mining, frequent pattern mining
is a method for finding frequent patterns in large data [15]. The
patterns obtained from mining operations are usefully utilized to
analyze data characteristics or gain information needed for
decision-making. In addition, it can be applied in a variety of real
data analyses such as web data [20], customer data in finance,
correlation of product data, vehicle and communication data [9],
bio data [13], hardware monitoring of computer system [45], and
regular pattern mining [28]. In pattern mining, a pattern is a set of
items in a certain database, and a support of the pattern is defined
as the number of transactions containing the pattern, where we
regard patterns satisfying a given minimum support threshold as
frequent ones. Apriori [1] and FP-growth [14] are fundamental
algorithms in frequent pattern mining, and current studies are
proceeding based on the two algorithms. Moreover, other numerous
methods have been suggested. First, there are methods using closed
patterns such as BMCIF [8], and CEMiner [9] and those for maximal
patterns such as MAFIA [5], FP-MAX [12], LFIMiner [16], MCWP [41],
and MWS [42]. Furthermore, there exist other approaches for
stream environments such as WMFP-SW [19], BSM [30], CPS-tree
[31], and RPS-tree [32], and for utility patterns such as HUIPM [2],

* Corresponding author. Tel.: +82 234082902.
E-mail addresses: gbpyun@sju.ac.kr (G. Pyun), yunei@sejong.ac.kr (U. Yun),
khryu@cbnu.ac.kr (K.H. Ryu).

0950-7051/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.knosys.2013.10.013

HUPMS [3], and UP-growth [34]. The following techniques apply
item weights into the mining process. WARM [33], WAS [39], and
MWFIM [40] are weight-based algorithms, and TIWS [7] adds
weights with times. In addition, there is an approach which finds
frequent patterns from the top support to kth support without
any given minimum support threshold. The method is called
Top-k pattern mining, and typical studies are MinSummary [18],
PND [24], Chenoff [35], Topk-PU [43], SpiderMine [44], etc. In the
sequential pattern mining considering item sequence, there are
SeqStream [6], StreamCloseq [10], ApproxMAP [17], TD-seq [22],
CSP [27], WSpan [38], and so forth. U2P-Miner [23]| mines uncertain
data, and GAMiner [36] gives meaning to interesting patterns and
then extracts patterns. Developing an improved algorithm for the
frequent pattern mining can contribute to advancing mining perfor-
mance in various mining fields. FP-growth-based frequent pattern
mining, such as FP-growth* [12], patricia-tree [26], and IFP-growth
[21], has the following characteristics. FP-growth has connection
information among all nodes in FP-tree in order to search the nodes.
Therefore, it has many pointers for connecting nodes, thereby using
a lot of runtime and memory resources. In this paper, we, therefore,
propose a novel tree structure, LP-tree (Linear prefix-tree) and an
algorithm using the tree, called LP-growth which can conduct
mining operations more quickly and efficiently than previous
algorithms. Our LP-tree can solve the above limitation due to its spe-
cial structure based on the linear form. We can obtain advantages by
converting tree’s nodes as array forms. It can increase memory effi-
ciency through arrayed nodes since they can reduce connection

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2013.10.013&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2013.10.013
mailto:gbpyun@sju.ac.kr
mailto:yunei@sejong.ac.kr
mailto:khryu@cbnu.ac.kr
http://dx.doi.org/10.1016/j.knosys.2013.10.013
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

126 G. Pyun et al./Knowledge-Based Systems 55 (2014) 125-139

information. We can also speed up item traversal times since
LP-tree does not use pointers in most cases and generates a large
number of nodes at once due to its linear structure. By applying
the features of LP-tree to mining process, we can obtain the follow-
ing benefits: (1) Tree generation rate of our approach becomes fas-
ter than that of FP-growth since ours can create multiple nodes at
once by a series of array operations. Meanwhile, FP-growth makes
nodes one by one. (2) We can access parent or child nodes without
corresponding pointers when searching trees since the nodes are
stored as an array form. (3) Memory usage for each node becomes
relatively small since LP-tree does not require internal node point-
ers. (4) It is possible to traverse trees more quickly compared to
searching for them with pointers since our approach directly acces-
ses corresponding memories due to the feature of the array struc-
ture. This paper is organized as follows. In Section 2, we introduce
related work with respect to LP-tree and LP-growth, and describe
details for our techniques and algorithm in Section 3. Next, we com-
pare performance of our algorithm with those of previous algo-
rithms through various experiments in Section 4, and we finally
conclude this paper in the last section.

2. Related work

Frequent pattern mining extracts specific patterns with sup-
ports higher than or equal to a minimum support threshold, and
many of mining methods have been researched as mentioned
above, but Apriori [1] and FP-growth [14] are still regarded as
underlying algorithms. Apriori is the oldest conventional mining
algorithm, and it performs mining operations by extending pattern
lengths. The algorithm generates candidate patterns through the
pattern extension in advance, and then confirms whether the can-
didates are actually frequent patterns by scanning a database. Con-
sequently, Apriori has no choice but to scan the database as much
as the maximum length among frequent patterns. UT-Miner [37] is
an improved Apriori algorithm specialized in sparse data, where
sparse data indicate that most transactions are different from each
other. The algorithm uses an array structure, unit triple storing rela-
tions between items and transactions in a database to improve
mining performance. However, UT-Miner does not guarantee fine
performance in terms of runtime and memory usage since the
algorithm is based on Apriori method. On the other hand, FP-
growth [14] solved the above problem by scanning a database only
twice. It uses a tree structure, called FP-tree, which can prevent the
algorithm from generating candidate patterns. FP-tree consists of a
tree for storing database information and a header table containing
item names, supports, and node links. A tree is composed of nodes,
where each of them includes an item name, a support, a parent
pointer, a child pointer, and a node link. The node link is a pointer
that connects all nodes with the same item to each other. Since the
FP-growth algorithm was proposed, various algorithms have been
published on the basis of the algorithm. FP-growth-goethals [11] is
a FP-growth implementation which is optimized by Bart-Goethals.
To increase efficiency of search space in FP-growth, FP-growth-tiny
[25] generates conditional FP-trees using conditional patterns
without creating any conditional database. In CT-PRO [29], the
authors suggested Compressed FP-tree adding a count array into
the nodes of the FP-tree, where each entry of the array corre-
sponded to the number of itemset’s occurrences. The algorithm
mines frequent patterns using the information added in the tree
without recursive calls. IFP-growth [21] enhanced pruning effect
with a new tree structure, FP-tree+, where the tree adds an address
table to the FP-tree. Therefore, the algorithm decreases the number
of conditional FP-trees, thereby improving mining speed. Mean-
while, it needs more information than the original FP-tree. In addi-
tion, IFP-growth does not upgrade memory efficiency although this

contributes to reducing runtime. MAFIA-FI [5] saves data informa-
tion into a bitmap form so as to reduce the number of tree
searches. The bitmap is made up of two dimensions, where x-axis
means items and y-axis is transactions. For example, a point (2,4)
of a certain bitmap means that the second item exists in the fourth
transaction. Thus, MAFIA-FI can compute patterns or items’ sup-
ports through “AND” operations of the bitmap without tree tra-
versals. In addition, the algorithm can prevent creating needless
trees with infrequent patterns and maximize pruning efficiency.
However, MAFIA-FI requires more memory although its runtime
is faster than the original method. Patricia-tree [26] also uses an
array structure to a part of the FP-tree, where the algorithm gener-
ates paths with the same support as an array. Meanwhile, the
LP-tree proposed in this paper constructs all paths as arrays
regardless of items’ supports, where the shapes of the arrays vary
depending on each transaction’s form. FP-growth* [12] proposed
FP-array with pattern information and increased pruning efficiency
with FP-array. The approach calculates supports of patterns to be
expanded in advance, and eliminates infrequent patterns effec-
tively through the proposed FP-array. However, FP-growth* also
does not reduce the size of trees since it still uses the original
FP-tree-based structures. As a result, we need to develop a new
tree structure to improve fundamental performance of the mining
algorithm. Consequently, we propose a novel tree and algorithm
for satisfying both runtime and memory efficiency. In our LP-tree,
its runtime and memory performances are more outstanding than
those of FP-growth* due to its special tree structure based on the
array.

3. Frequent pattern mining based on Linear Prefix-tree

In this section, we present details of LP-growth algorithm and
related techniques. The algorithm conducts mining operations
with LP-tree and corresponding growth methods.

3.1. Preliminaries

Given a transaction database, D, I = {iy,iy,...,i,} is a set of items
composing D, and D consists of multiple transactions. All transac-
tions have each a unique set of items. D includes unique IDs, called
TIDs, with respect to each transaction. A pattern is defined as a sub
or whole set of I. Assuming that any pattern P has several items and
its first and last ones are i, and i, respectively, P is denoted as
follows.
P={ip,...,i.}, 1<b<e<gn.

P’s support means the number of transactions containing in D.
In other words, this indicates how much P occurs in D. Let |P| be
the number of transactions including P and |D| be the number of
all transactions in D. Then, we can calculate P’'s support rate, sup(P)
as follows.

sup(P) = [P|/|D],

where 0 < sup(P) < 1. Pis regarded as a frequent pattern if sup(P) is
not smaller than a given minimum support (or minsup). Denoting
the frequent P as L, it is also included in I and satisfies sup(L)> min-
sup, where 0 < minsup < 1.

L ={PCljsup(P) > minsup}.

For instance, given a database, {{TID1: a,b,c}, {TID2: a,b}, and {TID3:
b,c,d,e}}, I becomes I ={a,b,c,d,e}. If a minimum support threshold
is 60%, a pattern, {a,b} is frequent since it appears in TID1 and 2;
thus, its support is higher than the threshold. Meanwhile, another

Download English Version:

https://daneshyari.com/en/article/402363

Download Persian Version:

https://daneshyari.com/article/402363

Daneshyari.com

https://daneshyari.com/en/article/402363
https://daneshyari.com/article/402363
https://daneshyari.com

