
Dynamic randomization and domain knowledge in Monte-Carlo Tree Search
for Go knowledge-based systems

Keh-Hsun Chen ⇑
Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

a r t i c l e i n f o

Article history:
Available online 27 August 2011

Keywords:
Monte-Carlo Tree Search
UCT algorithm
Simulation game
Domain knowledge
Go
Search parameters
Move generators
Dynamic randomization

a b s t r a c t

This paper is an extension of the article [13] presented at IWCG of TAAI 2010. It proposes two dynamic
randomization techniques for Monte-Carlo Tree Search (MCTS) in Go. First, during the in-tree phase of a
simulation game, the parameters are randomized in selected ranges before each simulation move. Sec-
ond, during the play-out phase, the priority orders of the simulation move-generators are hierarchically
randomized before each play-out move. Essential domain knowledge used in MCTS for Go is discussed.
Both dynamic randomization techniques increase diversity while keeping the sanity of the simulation
games. Experimental testing has been completely re-conducted more extensively with the latest version
of GoIntellect (GI) on all three Go categories of 19 � 19, 13 � 13, and 9 � 9 boards. The results show that
dynamic randomization increases the playing strength of GI significantly with 128K simulations per
move, the improvement is about seven percentage points in the winning rate against GnuGo on
19 � 19 Go over the version of GI without dynamic randomization, about three percentage points on
13 � 13 Go, and four percentage points on 9 � 9 Go.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Because of its intrinsic difficulty in positional evaluation and
large branching factor, Go has been the most challenging board
game for AI research since the dawn of computer Go 40 years
ago [23,26]. Domain knowledge has been essential in the develop-
ment of computer Go [2,9,22]. Go playing programs can be viewed
and researched as knowledge based systems [14,21,24].

MCTS with the UCT algorithm [17,19] is the most effective ap-
proach known today in tackling Go by a computer. Some essential
domain knowledge is needed for MCTS to be effective in Go
[10,18]. Suitable randomization on key parameters of the UCT algo-
rithm based MCTS and on the priorities of domain knowledge
items can increase diversity while keeping the sanity of the simu-
lation games and thus improve the performance of the program
significantly. On 19 � 19 GI with 128K simulations per move, the
increase on the winning rate against GnuGo is about seven per-
centage points over the version of GI without dynamic randomiza-
tion. On 13 � 13 (resp. 9 � 9) GI with 128K simulations per move,
the improvement is about three (resp. four) percentage points.

The MCTS with UCT algorithm is outlined in Section 2. The do-
main knowledge, used by GI on branching in Monte-Carlo (MC)
search tree, is discussed in Section 3. The dynamic parameter ran-
domization technique is investigated in Section 4. Section 5 is

devoted to the technique of dynamic randomization of the order-
ing of the move-generators for the simulation play-outs. Section 6
presents the experimental results of combing both randomization
techniques. Section 7 contains concluding remarks and future
research.

2. Monte-Carlo Tree Search

The basic UCT algorithm with Progressive Widening for MCTS
can be outlined as follows [6,15]:

Initialize the tree T to only one node, representing the current
Go board situation.

while (total number of simulations < limit) {
Simulate one game g from the root of the tree to a final
position, choosing moves as below:
Bandit part:

For a situation in T, choose the move with maximal score
according to the UCB1 formula [1] unless #simulation-
games through the node exceed the threshold set by
Progressive Widening [15], in that case a new child node is
branched for the next highest value move determined by
the in-tree Go knowledge.
MC part:
For a situation out of T, choose the move according to a

(continued on next page)

0950-7051/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.knosys.2011.08.007

⇑ Tel.: +1 704 687 8545; fax: +1 704 687 3516.
E-mail address: chen@uncc.edu

Knowledge-Based Systems 34 (2012) 21–25

Contents lists available at SciVerse ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys

http://dx.doi.org/10.1016/j.knosys.2011.08.007
mailto:chen@uncc.edu
http://dx.doi.org/10.1016/j.knosys.2011.08.007
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


play-out policy.
Update win/loss and #simulations statistics in all situations
of T crossed by g.

Add to T a new descendant node for the first situation of g
which is not yet in T.

}
Return the move simulated most often from the root of T.

We shall discuss Go knowledge used by GI in Monte-Carlo (MC)
search tree branching in the next section. The UCB1 formula will be
given and discussed in Section 4.1.

3. Domain knowledge for MC tree branching

Go has a very high branching factor – over 200 on average for
19 � 19 Go. If the MC search tree tries to cover all legal branches,
then the tree depth would be rather shallow and the MCTS would
not be effective. We need to use domain knowledge to order the
candidate moves, and then use Progressive Widening gradually
to explore more move options. Since we want to do as many sim-
ulations as feasible, speed is a key factor. The most important node
in the MC search tree is the root node because the move decision is
to select the move corresponding to the root node’s most promis-
ing child node. More computing resource is spent on the root node
to get a high quality candidate move ordering. We shall discuss do-
main knowledge for the root node in Section 3.1 and for non-root
node in Section 3.2.

3.1. Knowledge at the root

The root node represents the current board configuration. To
pursue high quality move ordering, GI uses intense computation
to obtain knowledge about the current game configuration. The
essential domain knowledge computed for the root node includes
[9]:

a. Mortality of blocks – use heuristic search methods to decide
which blocks can be captured, how to capture, and what are
the escape moves if any [25].

b. Connectivity of chains – use heuristic, pattern matching, and
search to find connectivity of blocks to form chains.

c. Safety of groups – use influence and chains to identify
groups and then use static analysis and heuristic search to
decide the life and death status of groups. Each group gets
a heuristic estimate of its safety [7,8].

d. Territory and potential territory – build upon the knowledge
accumulated from the first three steps to form a heuristic
estimate of territory belonging of the board points.

GI contains a couple of dozen of special purpose move genera-
tors. Each use some of the above computed knowledge to generate
recommended moves for a specific sub-goal, such as capturing, ex-
tend territory, connection, attack weak opponent group, etc. Each
such recommended move is associated with a recommended value.
The move value of a move location is a weighted linear combina-
tion of the move values from all move generators for that move
point. The candidate moves are ordered according to their move
values.

3.2. Knowledge at non-root nodes

Since speed is of essence for simulation games, we use a more
condensed and simplified set of move generators to provide move
values for successor move ordering in the tree. First we use the sur-

rounding index vales [11] plus the residual move value from the
root inversely proportioned to the node depth as a default. We
then adjust values for local patterns around the last move and sec-
ond to last move. Finally we add major values to moves for captur-
ing/escaping blocks with one or two liberties using speedy pseudo
ladders [10]. Again, successor moves are ordered by the final move
values.

4. Dynamic parameter randomization

Rapid Action Value Estimation (RAVE) and prior knowledge
have been incorporated into the UCT algorithm [6,18]) to further
improve the playing strength of Go programs. There are several
key parameters in the UCT algorithm incorporating RAVE and prior
knowledge that needs to be tuned for the program to perform well
[4,12].

These key parameters are identified in Section 4.1. The methods
used by GI initially to ‘‘optimize’’ their values are discussed in Sec-
tion 4.2. The author has recently realized that there is no optimal
set of the parameter values. If we randomize those parameter val-
ues dynamically in reasonable intervals, the program increases
diversity in sampling and performs significantly better than any
fixed set of parameter values tried before. This technique is pre-
sented along with experimental results on 19 � 19, 13 � 13, and
9 � 9 Go against GnuGo 3.8 Level 10 in Section 4.3.

4.1. Key parameters of MCTS

The UCB1 formula is given as

si ¼ ri þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ
c � ni

s
;

where si is the score of child i, ri = wi/ni is the win rate of child i, n is
the total number of simulation games going through the parent
node, ni is the number of simulation games going through child i,
and c is a constant to balance exploitation vs. exploration – our first
key parameter to be tuned. Within the MC search tree, the UCT
algorithm advances from the parent node to the child node maxi-
mizing the score si. A progressive widening technique [5,15] is used
to control the branching of the tree.

GI uses RAVE as described in [18]. Assume child i has a RAVE
UCB1 score ti. Then, the maximum linear combination score of ti

and si will be used to select the child node to advance:

v i ¼ b�ti þ ð1� bÞ�si

where b ¼
ffiffiffiffiffiffiffiffi

k
3nþk

q
is a constant between 0 and 1. The constant k is

our second key parameter. Now assume we have some prior knowl-
edge about the successor moves represented by numerical weight ui

for child i. We shall treat the prior knowledge as if we had played k1

(virtual) simulation games with k1 � ui/umax (virtual) wins where
umax = max{ui|i = 1,2, . . .,#Children}. That is, the win rate is now cal-
culated as ri ¼ wiþk1�ui=umax

niþk1
in the UCB1 formula. GI has considerably

more knowledge at the root node than at descendant nodes in the
MC search tree with many traditional GI knowledge routines used
at the root node. So a separate parameter k0 is used for the root
and parameter k1 for all non-root nodes. Finally, since RAVE has a
more negative effect than benefit when n is large, GI uses a 5th
parameter h, which is a threshold. When the number of simulation
games passing through a node is greater than h, RAVE is not used at
that node when selecting the child node. Naturally, we want to tune
these five key parameters c, k, k0, k1, and h.

22 K.-H. Chen / Knowledge-Based Systems 34 (2012) 21–25



Download English Version:

https://daneshyari.com/en/article/402405

Download Persian Version:

https://daneshyari.com/article/402405

Daneshyari.com

https://daneshyari.com/en/article/402405
https://daneshyari.com/article/402405
https://daneshyari.com

