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a b s t r a c t 

Attribute reduction is a key issue in rough set theory which is widely used to handle uncertain knowl- 

edge. However, most existing attribute reduction approaches focus on cost insensitive data. There are rel- 

atively few studies on cost sensitive data. Especially, how to evaluate a cost sensitive reduction algorithm 

is still an issue needing to be studied further. In this paper, we propose four relative evaluation metrics 

which can be used to compare and evaluate different algorithms for cost sensitive attribute reduction 

more conveniently. Moreover, we propose a particle swarm optimization method for cost sensitive at- 

tribute reduction problem inspired by its powerful search ability. The proposed approach is tested with 

three typical test cost distributions and compared with an influential algorithm reported recently on both 

exiting metrics and proposed metrics. Results indicate that the proposed relative evaluation metrics are 

effective and convenient. Comparing results also show that the proposed algorithm is effective. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Rough set theory is a useful tool for analysis and processing of 

data [28,29] , and has draw great interests in both theoretical and 

application aspects [6,10–14,16,20,22,28,36–39] . Using the concepts 

of lower and upper approximations, rough set theory can obtain 

hidden knowledge from information systems or information tables. 

Furthermore, it can also be used to achieve a subset of attributes 

of original information systems, called an attribute reduct. Actually, 

an attribute reduct is a subset of attributes that are jointly suffi- 

cient and individually necessary for preserving a particular prop- 

erty of a given information table. In recent years, numerous stud- 

ies on attribute reduction based on rough set theory have been 

proposed [8,9,15,17,30,31,35,40] . Please refer to the review paper 

[33] for more information about attribute reduction in rough set 

theory. 

Most existing attribute reduction approaches deal with cost 

insensitive data. In many applications, however, data are not free. 

Each test (i.e. attribute, feature) may have an associated cost 

[23,25,26,32,34] . Test cost is the money, time, or other resources 

we pay for collecting a data item of an object [25,34] . For example, 
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in medical diagnosis, a blood test has a cost which may be quite 

different to the cost of an fMRI test. 

Min et al. [24] addressed the feature selection with test cost 

constraint problem. Susmaga [32] introduced an exhaustive algo- 

rithm for generating all reducts of the minimal cost, called the 

minimal cost reducts or the cheapest reducts. Min et al. [23] stud- 

ied the similar problem, called the minimal test cost reduct prob- 

lem, and proposed a heuristic algorithm. They also defined three 

metrics to evaluate the performance of reduction algorithms. The 

metrics supply measures to evaluate algorithms for the minimal 

test cost reduct problem. However, there is an assumption that all 

the reducts are obtained when computing these metrics. In other 

words, one needs to obtain all the reducts, which is really a hard 

task, to compute the metrics. To our understanding, existing met- 

rics for comparing algorithms are a bottleneck for constructing 

other new algorithms. Hence, we need to construct metrics which 

are not defined based on the global optimal reduct. 

Particle swarm optimization (PSO) is a kind of swarm in- 

telligence optimization method based on social-psychological 

principles and provides insights into social behavior, as well as 

contributing to engineering applications. Kennedy and Eberhart 

first proposed PSO algorithm [21] . PSO provides potential solu- 

tions through particles flying across the problem hyperspace. The 

unique information diffusion and interaction mechanisms of PSO 

enable it to solve many problems with good performance at low 
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computational cost. PSO has been successfully applied into many 

fields [1,4,5,18,19,27] . Inspired by the powerful search ability, Dai 

et al. introduced discrete PSO into attribute reduction problem [7] . 

However, cost factor was not considered in [7] . 

In this paper, we focus on the minimal test cost reduct problem 

including the evaluation metrics and the computing of the minimal 

test cost reduct. To compare and evaluate different algorithms for 

the minimal test cost reduct problem, we propose four new rela- 

tive metrics. These metrics are convenient to compute. Moreover, 

we construct a particle swarm optimization method for cost sensi- 

tive attribute reduction. One reason why we choose PSO is because 

of the fact that PSO is mainly used to handle function optimiza- 

tion rather than combination optimization. It is very convenient 

to use PSO to handle function optimization problems, and is not 

suitable for combination optimization problems directly. The min- 

imal cost attribute reduct problem is a typical combination opti- 

mization problem. We hope that other search algorithms, such as 

Genetic Algorithm, Genetic Programming, Artificial Immune Algo- 

rithm, Ant Colony Algorithm, Artificial Bee Colony Algorithm, can 

be easily used to the minimal cost attribute reduct problem even 

if some of them were first proposed to handle function optimiza- 

tion problems based on our study. The proposed algorithm based 

on PSO is evaluated by existing three metrics and the proposed 

four metrics and compared with the existing heuristic algorithm 

in [23] . Results indicate the effectiveness of the proposed metrics 

and algorithm. 

The rest of this paper is organized as follows. In Section 2 , 

the minimal test cost attribute reduct problem and related 

concepts are reviewed. In Section 3 , existing evaluation met- 

rics are reviewed. Four new evaluation metrics are proposed. 

Section 4 presents a method based on particle swarm optimization 

for the minimal test cost attribute reduct problem. In Section 5 , 

experiments are conducted and the comparing results are shown. 

Section 6 concludes this paper. 

2. Cost sensitive attribute reduction 

In this section, we review some definitions related to cost sen- 

sitive attribute reduction problem. 

Definition 2.1 [23] . A test-cost-independent decision system (TCI- 

DS) S is the 6-tuple: 

S = < U, C, D, { V a | a ∈ C ∪ D } , { I a | a ∈ C ∪ D } , c > (1) 

where U is a finite set of objects called the universe, C is the set of 

conditional attributes, D is the set of decision attributes, { V a } is the 

set of values for each a ∈ C ∪ D , and { I a }: U → V a is an information 

function for each a ∈ C ∪ D . c : C → R + ∪ { 0 } is the test cost function 

and 

c ∗(A ) = 

∑ 

a ∈ A 
c ∗({ a } ) = 

∑ 

a ∈ A 
c(a ) (2) 

where c ∗ : 2 C → R + ∪ { 0 } is the attribute subset test cost function. 

Definition 2.2. The positive region of D with respect to B ⊆C is de- 

fined as: 

P OS B (D ) = 

⋃ 

X∈ U/D 

B (X ) (3) 

where B ( X ) denotes the B -lower approximation of X , and 

B (X ) = { x i ∈ U| [ x i ] B ⊆ U} (4) 

where [ x i ] is the equivalent class containing x under the indiscerni- 

bility relation generated by B . 

Definition 2.3. Any B ⊆C is called a relative reduct of S if and only 

if: 

(i) P OS B (D ) = P OS C (D ) 

(ii) ∀ a ∈ B, P OS B −{ a } ⊂ P OS C (D ) 

Definition 2.4 [23] . Let Red ( S ) denote the set of all relative reducts 

of a test-cost-sensitive decision system S . Any R ∈ Red ( S ) where 

c ∗(R ) = min { c ∗(R ′ ) | R ′ ∈ Red(S) } is called a minimal test cost reduct. 

There may exist a number of minimal test cost reducts. The 

minimal test cost reduct problem is to find any one of them. 

3. Cost setting and evaluation metrics 

Three different schemes to produce random test costs were em- 

ployed in [23] . In this paper, we use the same schemes which com- 

prise: uniform distribution, normal distribution, and Pareto distri- 

bution. For simplicity, test costs are integers ranging from M to N , 

and are evaluated independently. 

(a) Uniform distribution 

This is one of the most commonly used distribution. Let c de- 

note the cost value of an attribute, then 

P (c = n ) = 

1 

N − M + 1 

where n is an integer in [ M, N] . 

This can be generated from a uniformly distributed random 

number x on (0,1). 

c u (M, N, x ) = M + 
 (N − M + 1) x � 
(b) Normal distribution 

Normal distribution is defined as: 

P (c) = 

1 √ 

2 πσ 2 
e 
− (c−u ) 2 

2 σ2 where parameters u and σ 2 are the 

mean and the variance respectively. 

Like in [23] , to generate an integer in [ M, N ], we first obtain 

a random number r from a normal distribution with u = 0 and 

σ = 1 . Then, let y = 

M+ N+1 
2 + αr, where α is a real number which 

equals to 8. 

Clearly, y is also a normal distribution with u = 

M+ N+1 
2 . 

Finally, we set the cost as follows: 

c n (M , N , r) = 

{ 

M; y < M 

N; y > N 


 y �; otherwise 

(5) 

(c) Pareto distribution 

Pareto distribution is a power probability distribution that is 

used in description of social, scientific, geophysical, actuarial, and 

many other types of observable phenomena. 

The bounded Pareto distribution which is more applicable is 

used, similar to [23] . For a uniformly random number x in (0,1), 

we have 

P (M, N, x ) = 

(
−
(

x (N + 1) α − xM 

α − (N + 1) α

M 

α(N + 1) α

)) 1 
α

It is a bounded Pareto-distribution on (M,N + 1) with α deter- 

mines the shape of the distribution. In our experiment, α is set to 

2. 

Finally, we set the cost c p (M, N, x ) = 
 P (M, N, x ) � . 
To evaluate the performance of an algorithm for the cost sensi- 

tive attribute reduct problem, Min et al. [23] defined three metrics 

including finding optimal factor, maximal exceeding factor and aver- 

age exceeding factor . 

Definition 3.1 [23] . Let the number of experiments be K , and the 

number of successful searches of an optimal reduct be k . The Find- 

ing Optimal Factor (FOF) is defined as: 

op = 

k 

K 

(6) 
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