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a b s t r a c t 

Matrix factorization based techniques, such as nonnegative matrix factorization (NMF) and concept fac- 

torization (CF), have attracted a great deal of attentions in recent years, mainly due to their ability of 

dimension reduction and sparse data representation. Both techniques are of unsupervised nature and 

thus do not make use of a priori knowledge to guide the clustering process. This could lead to inferior 

performance in some scenarios. As a remedy to this, a semi-supervised learning method called Pairwise 

Constrained Concept Factorization (PCCF) was introduced to incorporate some pairwise constraints into 

the CF framework. Despite its improved performance, PCCF uses only a priori knowledge and neglects 

the proximity information of the whole data distribution; this could lead to rather poor performance 

(although slightly improved comparing to CF) when only limited a priori information is available. To ad- 

dress this issue, we propose in this paper a novel method called Constrained Neighborhood Preserving 

Concept Factorization (CNPCF). CNPCF utilizes both a priori knowledge and local geometric structure of 

the dataset to guide its clustering. Experimental studies on three real-world clustering tasks demonstrate 

that our method yields a better data representation and achieves much improved clustering performance 

in terms of accuracy and mutual information comparing to the state-of-the-arts techniques. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Data representation is a key topic in machine learning and pat- 

tern recognition. Recent studies have shown that compact repre- 

sentation of data sets can greatly facilitate many learning tasks 

such as clustering and classification. For example, as demonstrated 

in [2,23] , data similarity can be measured much more accurately 

in lower dimensional spaces. As one of the popular methods for 

dimension reduction, matrix factorization has received a great deal 

of attentions in recent years, and many techniques have been de- 

veloped such as PCA [14] , NMF [12,17,24,25,31,34] , CF [30] , etc. NMF 

focuses on the analysis of data matrices whose elements are non- 

negative, and can be used to obtain a new part-based representa- 

tion in some lower dimensional space. Resulting factorization from 

NMF often enables better semantic interpretation, and thus can 

be used to derive more accurate clustering. It has been shown 

that NMF provides better performance than PCA in face recogni- 

tion [19] and document clustering [31] . A major limitation of NMF 
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is that it could not effectively perform in some transformed spaces 

such as the reproducing kernel Hilbert space (RKHS) [3] . To address 

this issue, Xu and Gong [30] proposed CF, which works in any data 

representation space. 

Another often used method for dimension reduction is mani- 

fold learning. Since the year of 20 0 0, many manifold learning al- 

gorithms have been proposed, such as Locally Linear Embedding 

(LLE) [26] , Laplacian Eigenmap [1] , and ISOMAP [27] . All these 

methods are based on the idea of local invariant, which means 

that nearby points are likely to have similar embeddings [9] . A 

commonly used way for capturing the local invariant property of 

datasets is to construct a p -nearest neighbor graph and its corre- 

sponding Laplacian graph [3,4] . Combining these graphs with NMF 

and CF has resulted in two improved techniques called Graph Reg- 

ularized Nonnegative Matrix Factorization(GNMF) [4] and Locally 

Consistent Concept Factorization (LCCF) [3] . A major benefit of such 

techniques is that their resulting data representations can better 

capture the geometric structures of the data space. 

Many of the aforementioned learning methods are purely un- 

supervised. To further improve the quality of dimension reduction, 

an often used strategy is to incorporate some a priori knowledge 

into the learning process [6,8,10,20,22,28,29,32,33,35] . Such infor- 

mation is usually represented by pairwise constraints which means 
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that the constrained data pairs belong to either the same cluster 

or different clusters. Correspondingly, these constraints are called 

must-links constraints and cannot-links constraints, respectively. 

Among these semi-supervised learning methods, Semi- 

Supervised Clustering via Matrix Factorization (SSMF) [28] and 

Constrained Non-Negative Matrix Factorization(CNMF) algorithm 

[20] both incorporate a priori knowledge into the NMF framework. 

SSMF incorporates some labeled data into traditional NMF by 

adapting the objective function to include penalties for violated 

constraints. CNMF incorporates the label information as additional 

hard constraints into NMF. As SSMF and CNMF are direct extension 

of NMF, the limitation of NMF that it could not effectively per- 

form in RKHS still exits. Moreover, CNMF neglects the intra-class 

variance, which will weaken the representation ability of the 

method. Constrained Concept Factorization (CCF) [21] and PCCF 

[11] both incorporate a priori knowledge into the CF framework. 

CCF provides a semi-supervised matrix decomposition method 

which takes the label information as additional constraints. Similar 

to CNMF, the drawback of CCF is that it neglects the intra-class 

variance, which could weaken the representation ability of the 

method. PCCF augments the objective function of CF to ensure 

that data points with pairwise must-link constraints have the 

same class label and cannot-link constraints have different class 

labels. Both CCF and PCCF have difficulty to effectively capture 

the low dimensional manifold structure, due to their ignoring the 

proximity information of the dataset. Their performances could 

degrade to the level of the original CF method when only limited 

a priori information is available. 

To fix the above issues, we propose in this paper a frame- 

work called Constrained Neighborhood Preserving Concept Factor- 

ization (CNPCF) on top of PCCF. CNPCF uses pairwise constraints 

and information related to local invariant for better learning per- 

formance, where local invariant is based on a generalized meaning 

of closeness which includes not only spatially close points in the 

geometric space but also points directly connected by must-links. 

To encode such information, we use a p -nearest neighbor graph 

[1,7] (which is mainly for capturing the local geometric structure of 

the dataset) and a membership graph (which preserves the simi- 

larity of those must-link constrained pairs). To take into considera- 

tion of all such information, a carefully designed objective function 

is used for the factorization process. Particularly, a penalty term is 

added to the objective function for each violation of the pairwise 

constraints. To preserve local invariant, a term corresponding to 

each of the p -nearest neighbor graph and the membership graph 

is added to the objective function. To optimize the objective func- 

tion, we develop an iterative scheme, and show its convergence. 

Our generated data representation can well reflect the structure of 

the whole dataset. 

The rest of the paper is organized as follows. In Section 2 , a 

brief description of the related work is reviewed. Our proposed 

CNPCF is introduced, and an efficient iterative approach to solve 

the optimization problem of CNPCF is developed in Section 3 . In 

Section 4 some experimental results are presented. Finally, some 

concluding remarks and suggestions for future work are provided 

in Section 5 . 

2. A brief overview of Concept Factorization (CF) 

CF [3,30] is an efficient matrix decomposition technique. It has 

been shown that CF is a very suitable approach for data represen- 

tation. Let X = { x i } be a dataset of n data points, where each x i ∈ 

R 

m is an m dimensional point represented by a column vector. CF 

aims to find nonnegative matrices W ∈ R 

n × k and V ∈ R 

n × k such 

that the product of X, W and V provides a good approximation to 

the matrix X , i.e., 

X ≈ XWV 

T (1) 

Each column of V 

T is the k - dimensional representation of the 

original inputs in the transformed space. Since k is usually much 

smaller than m , CF can be regarded as a compressed approxima- 

tion of the original matrix which leading to a sparse encoding of 

the data. 

The objective function of CF uses the square of Frobenius norm 

to qualify the approximation. The Frobenius norm of matrix A is 

defined as 

‖ 

A ‖ F = 

√ 

m ∑ 

i =1 

n ∑ 

j=1 

∣∣a i j 

∣∣2 = 

√ 

trace (A 

T A ) , 

where A 

T denotes the conjugate transpose of A, and the trace func- 

tion is used. The objective function of CF has the following form, 

O = 

∥∥X − XWV 

T 
∥∥2 

F 
. (2) 

With the above formulation, the data representation problem 

is turned into the computation of the two matrices W and V 

that minimize this objective function. To minimize the function, 

[30] proposed an algorithm to iteratively update W and V as fol- 

lows. 

w 

t+1 
jk 

← w 

t 
jk 

( KV ) jk 

( KWV 

T V ) jk 
, v t+1 

jk 
← v t jk 

( KW ) jk 

( VW 

T KW ) jk 
. (3) 

It has been proved that this objective function is convergent un- 

der the above update rules [30] . Note that since the kernel matrix 

K = X 

T X computes the inner product in the original data space, 

CF can be effectively performed in the transformed data space by 

choosing a suitable kernel function to construct the kernel matrix. 

Please refer to [30] for details. 

3. Constrained Neighborhood Preserving Concept Factorization 

(CNPCF) 

As mentioned earlier, CF inherit all the strength of NMF and 

can be effectively performed in some transformed data spaces such 

RKHS. It could also suffer from a few limitations. For example, 

it learns effectively only in Euclidean space, which could prevent 

it from discovering the intrinsic geometrical structure of the in- 

put data. Moreover, since CF is an unsupervised method, it does 

not use any a priori information to guide the learning process. To 

address these issues, we propose in this section a new approach 

called CNPCF to incorporate information like some local geometric 

structure as well as pairwise constraints into the CF framework. 

A priori information in this paper is provided as the form of 

must-link and cannot-link pairwise constraints. Let C ML and C CL be 

the sets of must-link and cannot-link constraints, and M N and C N 
be the number of the must-link and cannot-link constraints, re- 

spectively. If x i and x j are in the same cluster, then ( x i , x j ) ∈ C ML , 

and if x i and x j are in different clusters, then ( x i , x j ) ∈ C CL . 

3.1. The object function 

We formulate CNPCF matrix factorization for data representa- 

tion as follows: Let X = { x i } be a dataset of n data points, where 

each x i ∈ R 

m is an m dimensional point represented by a col- 

umn vector. CNPCF tries to find the new representations V = 

[ v 1 , v 2 , . . . , v k ] ∈ R 

n ×k of the original data which can best preserve 

the local structure as well as pairwise constraints in the lower- 

dimensional space. 

To discuss this question, firstly we consider encoding the lo- 

cal geometric invariant information, i.e., a p -nearest neighbor graph 

(see Section 1 for details). As mentioned earlier, this graph contains 

n vertices with each corresponding to a data point. We define its 
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