
Knowledge-Based Systems 98 (2016) 226–240 

Contents lists available at ScienceDirect 

Knowle dge-Base d Systems 

journal homepage: www.elsevier.com/locate/knosys 

An adaptive algorithm for scheduling parallel jobs in meteorological 

Cloud 

Yongsheng Hao 

a , b , ∗, Lina Wang 

b , Mai Zheng 

c 

a Information Management Department, Nanjing University of Information Science & Technology, Nanjing 210044, China 
b School of electronic & information engineering, Nanjing University of Information Science & Technology, Nanjing, China 
c Computer Science Department, New Mexico State University, Las Cruces, NM, USA 

a r t i c l e i n f o 

Article history: 

Received 15 June 2015 

Revised 27 January 2016 

Accepted 29 January 2016 

Available online 8 February 2016 

Keywords: 

Cloud computing 

Parallelism 

Job scheduling 

Cluster 

a b s t r a c t 

From traditional clusters to cloud systems, job scheduling is one of the most critical factors for achieving 

high performance in any distributed environment. In this paper, we propose an adaptive algorithm for 

scheduling modular non-linear parallel jobs in meteorological Cloud, which has a unique parallelism that 

can only be configured at the very beginning of the execution. Different from existing work, our algorithm 

takes into account four characteristics of the jobs at the same time, including the average execution time, 

the deadlines of jobs, the number of assigned resources, and the overall system loads. We demonstrate 

the effectiveness and efficiency of our scheduling algorithm through simulations using WRF (Weather 

Research and Forecasting model) that which is widely used in scientific computing. Our evaluation results 

show that the proposed algorithm has multiple advantages compared with previous methods, including 

more than 10% reduction in terms of execution time, a higher completion ratio in terms of meeting soft 

deadlines, and a much smaller standard deviation of the average weighted execution time. Moreover, we 

show that the proposed algorithm can tolerate inaccuracy in system load estimation. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Data-intensive scientific applications rely heavily on parallelism 

to achieve high performance. By splitting the whole application 

into multiple tasks and executing them simultaneously, the perfor- 

mance may be improved by orders of magnitude compared with 

sequential execution. With the rapid growing of data sets, as well 

as the mature of large-scale cloud infrastructures (such as Amazon 

Web Services, Microsoft Azure, and Rackspace Clouds), more and 

more applications, especially those scientific applications handling 

huge data sets, will be parallelized to take advantage of the large- 

scale distributed computing environment. As in the traditional Grid 

computing environment, job scheduling in this new era is still one 

of the most critical factors affecting the performance of the paral- 

lelized applications. 

To achieve high performance in the distributed environment, 

parallel jobs must be scheduled efficiently. Generally, these paral- 

lel jobs require certain amount of resources (e.g., CPU cycles) to 

execute, and they exclusively occupy the resources assigned un- 

∗ Corresponding author at: Information Management Department, Nanjing 

University of Information Science & Technology, Nanjing, China. Tel.: +086 

13776622382. 

E-mail address: yongshenghao@yahoo.com (Y. Hao). 

til completion. There are two main objectives for scheduling: first, 

reducing the average execution time of the jobs; second, improving 

the ratio of the jobs that can be finished before the deadline. How- 

ever, the two objectives may conflict with each other. For example, 

if we assign more resources to a job, the job can finish in a shorter 

time. On the other hand, others jobs have to wait for more time. 

In the worst case, the other jobs cannot meet their deadlines. As a 

result, it is challenging to design an optimal scheduling algorithm 

to meet both goals. Indeed, previous studies have proved that opti- 

mizing task scheduling in the distributed environment is a NP-hard 

problem [15] . 

Much work has been done on different aspects of the schedul- 

ing problem [1–9,11–14] and on different platforms [5,8,10] . F. 

Ramezani et al. [15] try to consider the four conflicting objectives 

at the same time: minimizing task transfer time, task execution 

cost, power consumption, and task queue length. They designed 

a MOPSO (Multi-Objective Particle Swarm Optimization) /MOGA 

(Multi-Objective Genetic Algorithm) based algorithm to find the 

optimal solution for the proposed multi-objective task scheduling 

problem and evaluated the method on Cloudsim. L. Jing et al. [16] 

proposes the global earliest deadline first (GEDF) scheduling pol- 

icy, where each job can be represented by a directed acyclic graph 

(DAG) with nodes representing computational work and edges rep- 

resenting dependences between nodes. Y. Hao et al. [17] analyze 

http://dx.doi.org/10.1016/j.knosys.2016.01.038 

0950-7051/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.knosys.2016.01.038
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.01.038&domain=pdf
mailto:yongshenghao@yahoo.com
http://dx.doi.org/10.1016/j.knosys.2016.01.038


Y. Hao et al. / Knowledge-Based Systems 98 (2016) 226–240 227 

the scheduling target and propose a 0-1 integer programming for 

the target. Z. longxin et al. [18] proposes to schedule parallel jobs 

from two perspectives: reliability and energy conservation. They 

design a RMEC (Reliability Maximization with Energy Constraint) 

algorithm to keep a balance between reliability and energy con- 

sumption. Besides, for real-time workloads with intra-task paral- 

lelism, D. Ferry et al. [19] proposes a prototype scheduling service 

called RT-OpenMP based on OpenMP. While these approaches are 

excellent for their original design goals, they only focus on one sin- 

gle characteristic of the jobs (e.g., deadline or reliability). They do 

not consider multiple characteristics jointly (e.g., the speedup of 

jobs and the deadlines). Moreover, they do not consider the execu- 

tion environment (e.g., the system load), which is also critical for 

efficient scheduling. As a result, these methods may lead to some 

potential problems when scheduling non-linear parallel jobs. For 

example, if we always assign the maximum resources to jobs with 

the shortest estimated execution time, the system may run into the 

starvation problem, i.e., some low-privilige jobs may never be able 

to finish before their deadlines. Similarly, if we always assign re- 

sources to jobs with the minimum resource needs, some resources 

may be underutilized. Thus, focusing only on one aspect of the job 

or ignoring the system load is unlikely to achieve high scheduling 

efficiency. Moreover, because it is difficult, if not impossible, to es- 

timate the system load precisely, the scheduling algorithm must be 

able to tolerate inaccuracy in terms of system load calculation. 

In this paper, we propose an adaptive scheduling algorithm 

which takes into account multiple characteristics of the jobs as 

well as the execution environment, including the average execu- 

tion time, the deadlines of jobs, the number of assigned resources, 

and the overall system loads. Our approach is based on the key 

observation that when the system load is light, we can give more 

resources to every job than the time when the system has a large 

system load. With the increase of the arrival rate of jobs, how- 

ever, we should decrease the number of resources allocating to ev- 

ery job in order to reserve the computing capability of the whole 

system for more jobs. Also, for a job that has been waiting for a 

long time, we may give more resources to the job to ensure that it 

can be finished before its deadline. In one word, we take into ac- 

count the number of resources as well as the execution time under 

different system loads all together. More specifically, we consider 

how to assign resources when the number of assigned CPUs has a 

non-linear influence on the execution time of the parallel jobs. In 

most systems, assigning more resources to a job does not always 

reduce the execution time [20] , especially when the number of re- 

sources is more than a certain threshold. Thus, when assigning the 

resources, our algorithm not only takes the different system load 

into consideration, but also takes the non-linear relation between 

the execution time and the number of assigned resources. Mean- 

while, most of the jobs should be finished before their soft dead- 

lines [21] . The soft deadline means the latest finishing time of the 

job without incurring negative effects. If the job cannot finish be- 

fore the deadline, there will be a negative effect on the system. 

Note that the job may keep executing even after the deadline, so 

the negative effect may last. Thus, our algorithm strives to make 

sure that most jobs can meet their deadlines. 

In summary, the main contributions of this paper are: 

- An indepth analysis on the correlation among the performance, 

the average execution time of jobs, the deadline of jobs, and 

the number of the assigned CPUs under different system loads. 

A detailed example based on the WRF (Weather Research and 

Forecasting) Model is provided in Sections 3 and 7 to illustrate 

the performance implications of the various factors. 

- An adaptive scheduling algorithm taking into account the sys- 

tem load, the speedup under different parallelisms, the soft 

deadline, and the execution time. The policy makes the deci- 

sion of resource allocation based on the attributes of the jobs 

(e.g., deadlines) as well as the system load. Every job is as- 

signed a number of resources based on the system load. If the 

system load is light or the remaining time of the job is close 

to the deadline, the job will be given more resources to meet 

the deadline. Moreover, the scheduling policy is based on the 

speedup of the jobs. While calculating the speedup of a job 

precisely is difficult, we make the observation that we can es- 

timate the overall speedup based on some critical points of the 

speedup function, and use the estimated speedup to improve 

the scheduling efficiency. 

- A thorough evaluation of the proposed scheduling algorithm 

based on simulation. Particularly, we evaluate our algorithm 

under different system loads. In practice, it is almost impos- 

sible to predict the system load precisely [2,17,18] . Our method 

does not rely on a precise estimation of the system load. We 

show that our scheduling algorithm can achieve good perfor- 

mance even with only 80% accuracy (i.e., 20% error) of the sys- 

tem load. 

The rest of the paper is organized as follows: Section 2 

describes related work. Section 3 shows an example of WRF. 

Section 4 illustrates the framework of our system. Section 5 dis- 

cusses the scheduling algorithm in details. Section 6 evaluates 

the algorithm under different system loads based on simulations. 

Section 7 is the theoretical analysis and discussion. Section 8 con- 

cludes the paper. 

2. Related work 

L. Fan et al. classifies the existing scheduling algorithms for 

malleable parallel jobs [24] into three categories, including: 

- List algorithm. List algorithm schedules the job in arbitrary or- 

der. If there are enough resources for the first job, the job is 

scheduled immediately; 

- LPT (Longest Processing Time) algorithm. The only difference 

between LPT and list algorithm is that the jobs are listed in 

non-increasing order according to the execution time; 

- OM (Optimizing the Middle algorithm) algorithm. OM starts 

from the schedule produced by LPT and follows by a series of 

iteration. Through each round of the iteration, OM tries to find 

a scheduling method which has the smallest execution time of 

all the scheduling method. The iteration is stopped by some de- 

fined conditions. 

Compared with malleable parallel jobs, we find that most par- 

allel jobs need more resources when they have higher parallelism. 

Researchers have proposed some heuristics for the scheduling of 

parallel tasks. The EQUI (Equi-partitioning) algorithm [27] simply 

divides the total number of processors evenly among all active 

job sets at any time. HEFT (Extended-Heterogeneous Earliest Fin- 

ish Time) [28] has been derived from a list-scheduling algorithm 

for standard sequential tasks [29] . In these algorithms, the paral- 

lel platform is modeled as a set of configurations where each con- 

figuration consists of a set of identical processors. In each step of 

the algorithm, an unscheduled parallel task is selected and sched- 

uled to the configuration that minimizes its finish time. The task 

is selected based on the length of the longest path to an exit node 

where the length of a path is computed as the sum of the compu- 

tation and communication costs of the nodes and edges along this 

path. HEFT is similar to the Min–min method [30] in the Grid and 

in the Cloud (Cloud min–min), except that Min–min does not con- 

sider the parallelization of the job. Falco et al. extend the min–min 

algorithm to the scheduling of parallel tasks in [31] . 

Papazachos et al. take the parallel tasks as a Gang [32] and 

they have evaluated AFCFS (Adapted first come first served) and 



Download English Version:

https://daneshyari.com/en/article/402538

Download Persian Version:

https://daneshyari.com/article/402538

Daneshyari.com

https://daneshyari.com/en/article/402538
https://daneshyari.com/article/402538
https://daneshyari.com

