
AspectC++: An integrated approach for static and dynamic adaptation
of system software

Reinhard Tartler *, Daniel Lohmann, Fabian Scheler, Olaf Spinczyk
Friedrich-Alexander University, Erlangen-Nuremberg, Germany

a r t i c l e i n f o

Article history:
Received 16 November 2009
Received in revised form 4 February 2010
Accepted 3 March 2010
Available online 10 March 2010

Keywords:
AOP
C++
AspectC++
Programming languages
Adaptable systems

a b s t r a c t

Modern computer systems require an enormous amount of flexibility. This is especially the case in low-
level system software, from embedded devices to networking services. From literature and practice, var-
ious approaches to modularize and integrate adaptations have been investigated. However, most of this
work is implemented with dynamic languages that offer extensive run-time support and enable easy
integration of such approaches. System software is written in languages like C or C++ in order to minimize
utilization of system resources and maximize efficiency. While for these languages highly optimized and
reliable compilers are available, the support for static and dynamic adaptation is rather limited. In order
to overcome these limitations, we present an adaptation approach that is based on a sophisticated com-
bination of static and dynamic aspect weaving for aspects written in AspectC++. This facilitates the incre-
mental evolution and deployment of system software that has to be ‘‘always on”. We demonstrate the
feasibility of our approach and its applicability to two pieces of system software, namely the Squid
web proxy and the eCos operating system, which is used in the domain of resource-constrained deeply
embedded systems.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Infrastructure software, such as network services or operating
systems, is often faced with high availability demands. This poses
a real challenge when it comes to deploying adaptations (such as
a feature extension or a bug fix) to the running system. Applica-
tion-specific approaches (such as plugins) to load adaptation mod-
ules at run time often provide an extension interface in order to
modify the behavior of the base application. However, this ap-
proach inherently limits what the adaptation module can change;
in fact, it fails for modules that require more flexibility than what
the extension interfaces provides. A good example for such an
adaptation module is a bugfix, which potentially affects any part
of the application.

One of the hardest problems with implementing adaptation
modules is to specify where to apply what changes in the base pro-
gram. Aspect-oriented programming (AOP) languages provide
mechanisms to solve these challenges by obliviousness and quanti-
fication [11]. Obliviousness means that the application of adapta-
tions, called aspects, can be completely oblivious to the
component code, in the sense that neither components nor their
developers have to be aware of the aspects. Quantification stands

for the property that the same aspect code can easily affect several
adaptation points.

Most existing AOP approaches can be categorized as either dy-
namic or static, referring to the point in time when the actual as-
pect weaving process is performed. If the aspect weaver performs
static weaving, the aspects are woven in at compile time, link time,
or load time. With dynamic weaving, the aspects are woven into an
already running program, which promises to overcome the limits
that are imposed by traditional extension interfaces.

Dynamic aspect weavers, which feature invasive modification
of run-time behavior, are clearly more complex and therefore sel-
dom used than their static counterparts for system software writ-
ten in C/C++. However, they allow changing the traditional
deployment strategy for corrective changes to an already deployed
software from having to restart the whole system to a less intru-
sive processes. In order to bring these benefits to legacy applica-
tions, we are looking for an infrastructure that provides enough
flexibility for more intrusive modules like bugfix hot-patches or
feature extensions. In this article, we present an approach to de-
ploy such adaptation modules flexibly at compile time or run time
in low-level system software.

1.1. Problem statement

Ideally, an AOP user would be able to select the aspect lan-
guage and the weaving approach independently, solely based on

0950-7051/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.knosys.2010.03.002

* Corresponding author. Address: University of Erlangen-Nuremberg, Computer
Science 4, Martensstr. 1, 91058 Erlangen, Germany. Tel.: +49 9131 8528731.

E-mail address: Reinhard.Tartler@informatik.uni-erlangen.de (R. Tartler).

Knowledge-Based Systems 23 (2010) 704–720

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys

http://dx.doi.org/10.1016/j.knosys.2010.03.002
mailto:Reinhard.Tartler@informatik.uni-erlangen.de
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


the problem to solve. However, most existing aspect languages
provide weaver support for either static or dynamic weaving only.
What should be independent in theory, is tightly coupled in prac-
tice: the decision for a particular aspect language involves the
decision for either dynamic or static weaving as well. From a
user’s viewpoint, we have de facto ‘‘static” and ‘‘dynamic” aspect
languages. This is especially true with languages that are directly
compiled into binary machine code. In the C/C++ domain there
are observable differences in the provided AOP features: The
available ‘‘dynamic” aspect languages for C/C++ (such as Arachne
[9], TinyC2 [37], TOSKANA [12], or KLASY [36]) offer significantly
fewer features than their ‘‘static” counterparts (such as AspectC
[6], AspectC++ [32], Mirjam/WeaveC [26], Aspicere and Aspicere2
[1,2], and ACC [14,15]). Especially language features for generic
aspects and static crosscutting are hardly supported. This is
unsatisfying; the expressive power of an aspect language (to ad-
dress the ‘‘what” part of the problem) should not depend on the
intended deployment time (the ‘‘when”) and vice versa. From
the viewpoint of weaver implementation, it is, however, under-
standable: Languages that are strongly based on static typing
and compile-time genericity offer hardly any support for run-time
reflection, not to speak of means for extension, adaptation, or
introduction of new types at runtime. In a sense, Ada, C and
C++ are ‘‘just not designed” to support many AOP features with
runtime weaving. Nevertheless, a uniform, feature-rich, and
deployment-time independent aspect language would provide
numerous benefits; Section 3 lists some motivating application
scenarios.

1.2. Our contribution

We present results from our efforts to add dynamic weaving
support to a statically typed and compiled aspect language, for
which only static weaving support had existed before. Our ap-
proach is based on a novel combination of static and dynamic
weaving, which makes it possible to use AspectC++ features such
as generic advice (statically typed) and introductions even for
dynamically woven aspects. We are not aware of any other imple-
mentation for the C/C++ language domain that offers both, static
and dynamic weaving of aspects written in the same aspect
language.

Our targeted application domain is applications that run in a re-
source-constrained environment. For this reason, we cannot afford
invasive modifications of the base application, nor a heavy
weighted runtime system. Instead we extend our static aspect
weaver to collect type information about the adapted software
while preparing it for dynamic weaving. This extra information is
then used within the C++ template instantiation mechanisms to
generate advice code that is executed at runtime.

We analyze and discuss the combination of static and dynamic
weaving with respect to two dimensions: language and tools. On
the language level, we provide an in-depth analysis of challenging
AOP features from the focus of a statically typed base language.
On the tool level, we show how we implemented them in a
dynamic weaver for AspectC++. Insights about the relationship
between static and dynamic weaving on the tool level and an
evaluation of our implementation in the context of the Squid
web proxy [33] and the eCos operating system [25,10] round up
our contribution.

The article extends on previous work, as it provides an actual
solution for the problems that have been identified and briefly dis-
cussed in [31]. The focus on the implementation challenges of dy-
namic weaving of static cross-cutting sets it furthermore
significantly apart from our previous work on application-tailor-
able dynamic weaver run-time systems in [13].

1.3. Outline of the article

We begin with a brief introduction into AOP and the AspectC++
language in Section 2 and the presentation of some motivating
application scenarios in Section 3. This is followed by the analysis
of the implications with respect to dynamic weaving support in
Section 4. Section 5 provides an overview of related work. The con-
cepts and some details of our implementation for AspectC++ are
described in Sections 6 and 7, followed by two case studies in Sec-
tion 8. The first one shows how dynamic weaving can help to
dynamically adapt a system service – here the proxy server Squid
– both at compile time and at run time. The second study demon-
strates how our approach has been successfully deployed in the
context of deeply embedded systems. Section 9 discusses the pros
and cons of our approach. Finally, our work is summarized and
some conclusions are given in Section 10.

2. AOP concepts at a glance

Today, most AOP languages use the concepts and terminology
that was first introduced by AspectJ[18]. In the remaining parts
of this section, we will give a brief overview of the most common
AOP language elements in general and the AspectC++ notion in
particular, as required for understanding the remaining parts of
this article. Even though the introduction is based on AspectC++,
it basically holds for any statically woven AOP language.

2.1. Terminology

The most relevant AOP concepts are join point and advice. An ad-
vice definition describes a transformation to be performed at spe-
cific positions either in the static program structure (static cross-
cutting) or in the runtime control flow (dynamic cross-cutting) of
a target program. A join point denotes such a specific position in
the target program. The target program implicitly exhibits – by
its structure and nature – a large set of potential join points, which
are commonly called join point shadows [17,24]. Advice is given by
aspects to sets of join points called pointcuts. Pointcuts are defined
declaratively in a join-point description language. The sentences of
the join-point description language are called pointcut expressions.
An aspect encapsulates a cross-cutting concern and is otherwise
very similar to a class. Besides advice definitions, it may contain
class-like elements such as methods or state variables.

As an example, Fig. 1 illustrates the syntax of aspects written in
AspectC++. The aspect increments the member variable elements
after each call of the function Queue::enqueue(). In AspectC++,
pointcut expressions are built from match expressions and pointcut
functions. Match expressions are already primitive pointcut expres-
sions and yield a set of name join points. Name join-points repre-
sent elements of the static program structure such as classes or
functions. Technically, match expressions are given as quoted
strings that are evaluated against the identifiers of a C++ program.
The expression "% Queue::enqueue(. . .)", for instance, returns a
name pointcut containing every (member-) function of the class
Queue that is called enqueue. In the case of overloaded functions
with different argument types the expression would match all of
them. Code join points on the other hand, represent events in the
dynamic control flow of a program, such as the execution of a func-
tion. Code pointcuts are retrieved by feeding name pointcuts into
certain pointcut functions such as call() or execution(). The
pointcut expression call("% Queue::enqueue(. . .)"), for in-
stance, yields all events in the dynamic control flow where a func-
tion Queue::enqueue is about to be called.

As pointcuts are described declaratively, the target code itself
has not to be prepared or instrumented to be affected by aspects.

R. Tartler et al. / Knowledge-Based Systems 23 (2010) 704–720 705



Download English Version:

https://daneshyari.com/en/article/402546

Download Persian Version:

https://daneshyari.com/article/402546

Daneshyari.com

https://daneshyari.com/en/article/402546
https://daneshyari.com/article/402546
https://daneshyari.com

