
Knowledge-Based Systems 95 (2016) 71–74

Contents lists available at ScienceDirect

Knowle dge-Base d Systems

journal homepage: www.elsevier.com/locate/knosys

Original Software Publication

Arpeggio: A flexible PEG parser for Python

I. Dejanovi ́c

∗, G. Milosavljevi ́c , R. Vaderna

Faculty of Technical Sciences, University of Novi Sad, Serbia

a r t i c l e i n f o

Article history:

Received 2 September 2015

Revised 11 December 2015

Accepted 12 December 2015

Available online 22 December 2015

Keywords:

PEG

Packrat

Parser

Python

DSL

TextX

a b s t r a c t

Arpeggio is a recursive descent parser with full backtracking and memoization based on PEG (Parsing

Expression Grammar) grammars. This category of parsers is known as packrat parsers. It is implemented

in the Python programming language and works as a grammar interpreter.

Arpeggio has a very good support for error reporting, debugging, and grammar and parse tree visual-

ization. It is used in industrial environments and teaching Domain-Specific Languages course at the Faculty

of Technical Sciences in Novi Sad. Arpeggio is a foundation of a high-level DSL meta-language and tool -

textX.

It is a free and open-source software available at GitHub under MIT license.

© 2015 Elsevier B.V. All rights reserved.

Code metadata.

Nr. Code metadata description Please fill in this column

C1 Current code version 1.2

C2 Permanent link to code/repository used of this code version https://github.com/ElsevierKnowledgeBasedSystems/KNOSYS- D- 15- 01217

C3 Legal code license MIT

C4 Code versioning system used git

C5 Software code languages, tools, and services used Python 2.7, 3.2 - 3.5

C6 Compilation requirements, operating environments & dependencies Optional dependency: GraphViz v2.2x for visualization

C7 If available link to developer documentation/manual http://igordejanovic.net/Arpeggio/

C8 Support email for questions igor.dejanovic@gmail.com

1. Introduction

A parser is a software component that takes input (usually tex-

tual) and produces a data structure. This transformation is often

based on a formal description of the input language syntax - a

grammar. A traditional way to define the syntax of a programming

language is Chomsky’s generative system of grammars [1] , in par-

ticular, Context-Free Grammars and Regular Expressions. The main

problem with this approach is that it was meant to be used to de-

scribe natural languages where the possibility to define ambiguity

is a desirable feature. But, the very same feature is a source of se-

rious problems when describing machine-oriented syntaxes.

Parsing Expression Grammars (PEGs) provide an alterna-

tive, recognition-based formal foundation for describing machine-

∗ Corresponding author. Tel.: +381214852447.

E-mail address: igord@uns.ac.rs (I. Dejanovi ́c).

oriented syntaxes, which solves the ambiguity problem by not in-

troducing ambiguity in the first place [2] .

Arpeggio is an implementation of a PEG-based recursive de-

scent parser with backtracking and memoization implemented in

the Python programming language. This class of parsers is known

as packrat parsers [3] . Full backtracking enables an unlimited looka-

head while linear parse time is still preserved using memoization

technique where intermediate results are cached.

The main motivation to design and implement Arpeggio was to

provide a parsing infrastructure for a Domain-Specific Languages

(DSL) [4] development tool textX [5] . Nevertheless, as parsers are

important parts of many software tools and libraries (e.g. [6]),

Arpeggio is built to be suitable for all sorts of general purpose

parsing. It is used in data extraction from various textual formats,

parsing of different languages, analysis of legacy source code, etc.

http://dx.doi.org/10.1016/j.knosys.2015.12.004

0950-7051/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.knosys.2015.12.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2015.12.004&domain=pdf
https://github.com/ElsevierKnowledgeBasedSystems/KNOSYS-D-15-01217
http://igordejanovic.net/Arpeggio/
mailto:igord@uns.ac.rs
http://dx.doi.org/10.1016/j.knosys.2015.12.004

72 I. Dejanovi ́c et al. / Knowledge-Based Systems 95 (2016) 71–74

2. Problems and background

The development of DSLs usually requires a lot of experimen-

tation through trial and error. Furthermore, DSLs are much more

prone to change than General-Purpose Languages (GPL). Thus, tools

for DSL development should be built in such a way that the gram-

mar is readable, simple to change and extend, and to enable fast

round-trip.

From the start, Arpeggio is designed to work as a grammar

interpreter as opposed to grammar compiler (i.e. parser genera-

tor). Furthermore, various grammar syntaxes are supported, both

for people that have extensive knowledge in traditional grammar

specification (e.g. EBNF) and for those that know the host language

well (Python) and feel more natural when coding grammars using

Python language and IDE support.

Packrat parsers are recursive descent parsers with full back-

tracking [3] . This approach yields an unlimited lookahead but

could lead to exponential parse time in the worst-case scenarios.

Memoization is used to keep track of the results of already parsed

parts of the input. This technique ensures that parse time remains

linear.

One of the most popular parsing tools for Python in the past

was Pyparsing [7] . It is a mature parsing library based on PEG

with a large set of examples and good documentation. But the

only way to describe a grammar in Pyparsing is by using Python

language. There is no external DSL variant that is more suitable for

seasoned EBNF grammar writers. Besides, the parse tree transfor-

mation is supported by “parse actions” that get triggered during

parsing which hampers backtracking and prohibits the transforma-

tion of the same parse tree to multiple representations.

A promising project that has emerged in the last several years

is Parsimonious [8] . The goal of this parser is to be fast and fru-

gal on RAM usage while maintaining usage simplicity. Currently,

Parsimonious is in development and lacks some features already

implemented in Arpeggio (e.g. multiple syntaxes, whitespace han-

dling, visualization). Moreover, there is no documentation nor any

examples at the moment.

3. Software framework

From the given grammar Arpeggio builds, in runtime, an in-

stance of the parser, which is a graph of Python objects whose

classes inherit ParsingExpression class (Fig. 1).

We call this graph of objects the parser model . The parser model

for the simple grammar given in Fig. 3 is given in Fig. 2 .

A grammar may be specified using different syntaxes. A canon-

ical form of the grammar specification is the internal DSL form

[4] , i.e. the grammar is defined using Python language elements

(Fig. 3).

In this version of Arpeggio, there are two more grammar spec-

ification languages both, of them implemented as external DSLs.

These two languages differ slightly, and both are implemented us-

ing Arpeggio itself 1 . Thus, their implementation is a good example

of Arpeggio’s capabilities.

Other features of Arpeggio are:

(1) Case sensitive/insensitive parsing (configurable per parser),

(2) Whitespace handling control,

(3) Direct support for language code comments (comments are

treated as whitespaces),

(4) Keywords handling,

(5) Newline termination for repetition operators (available for

internal syntax form only),

1 We eat our own dog food - https://en.wikipedia.org/wiki/Eating _ your _ own _ dog _

food

(6) Parse tree navigation operators,

(7) visitor pattern for semantic analysis,

(8) extensive error reporting and debugging support,

(9) parse tree and parse model visualization (using GraphViz
dot tool 2).

All of these features are thoroughly explained in the online

docs 3 .

4. Implementation and empirical results

Arpeggio is written in the pure Python programming language

without any dependencies 4 . It can be installed from PyPI 5 using

the standard Python installer - pip 6 . The details of the installation

and usage can be found in the project documentation.

Arpeggio has been validated in various academic and industrial

projects. It is covered with extensive unit tests. Our previous work

shows that Arpeggio’s speed is comparable to or in some cases

outperforms some popular Python parsers [9] .

Arpeggio has been used in many projects as a part of a higher

level tool for DSL construction textX [5] . textX uses Arpeggio as

a core parsing technology. Some open-source projects that use

Arpeggio through textX are listed on the textX project page.

textX and Arpeggio are used in the tool-chain of Typhoon-HIL

inc. for the definition and parsing of power electronics models,

component description, toolbox specification, and custom compo-

nent definitions.

5. Illustrative examples

The Arpeggio code repository hosts 11 different examples in

the examples directory. Each example comes with a README

file which contains its description and instructions on how to run

it 7 . Additionally, we provide three full-length tutorials (CSV, Bib-

TeX and Calc) in the documentation

8 . Here we will briefly de-

scribe each example. s The BibTeX example demonstrates parsing

of the BibTeX format 9 which is used for specification of biblio-

graphic information. This example accepts a file name from the

command line. The given file should be properly formatted Bib-

TeX file that is parsed and transformed to a list of BibTeX entries

given as Python dictionaries. Transformation is done using an in-

stance of visitor class BibtexVisitor . Test data is given in the

bibtex_example.bib file.

The Calc example is an implementation of a simple expression

evaluator. This example is done in both internal (calc.py) and

external (calc_peg.py and calc_cleanpeg.py) DSL forms.

There are two external variants. One is based on a clean PEG syn-

tax (calc_cleanpeg.py), while the other is based on the tra-

ditional PEG syntax (calc_peg.py). Visitor object performs the

evaluation of the expression by transforming the parse tree to an

expression value. In the external PEG versions, the same visitor

from the internal DSL version is used. The only difference is that

the grammars are in different forms, and thus ParserPEG class is

used to instantiate parsers instead of ParserPython .
The CSV example shows how to build a simple parser for the

CSV (Comma Separated Values) file format. A test data is given in

the test_data.csv file. In this example, we see how to change

whitespace handling by replacing standard whitespaces with tab

2 http://www.graphviz.org/
3 http://igordejanovic.net/Arpeggio/
4 Besides optional GraphViz library for visualization.
5 https://pypi.python.org/pypi
6 https://docs.python.org/3/installing/
7 https://github.com/igordejanovic/Arpeggio/tree/v1.2/examples
8 http://igordejanovic.net/Arpeggio/
9 http://www.bibtex.org/

https://en.wikipedia.org/wiki/Eating_your_own_dog_food
http://www.graphviz.org/
http://igordejanovic.net/Arpeggio/
https://pypi.python.org/pypi
https://docs.python.org/3/installing/
https://github.com/igordejanovic/Arpeggio/tree/v1.2/examples
http://igordejanovic.net/Arpeggio/
http://www.bibtex.org/

Download English Version:

https://daneshyari.com/en/article/402555

Download Persian Version:

https://daneshyari.com/article/402555

Daneshyari.com

https://daneshyari.com/en/article/402555
https://daneshyari.com/article/402555
https://daneshyari.com

