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a b s t r a c t

We consider the approximation capability of orthogonal super greedy algorithms (OSGA) and its applica-

tions in supervised learning. OSGA focuses on selecting more than one atoms in each iteration, which, of

course, reduces the computational burden when compared with the conventional orthogonal greedy algo-

rithm (OGA). We prove that even for function classes that are not the convex hull of the dictionary, OSGA

does not degrade the approximation capability of OGA, provided the dictionary is incoherent. Based on

this, we deduce tight generalization error bounds for OSGA learning. Our results show that in the realm

of supervised learning, OSGA provides a possibility to further reduce the computational burden of OGA

on the premise of maintaining its prominent generalization capability.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A greedy algorithm is a stepwise inference process that follows

the problem solving heuristic of making the locally optimal choice

at each step with the hope of finding a global optimum. The use

of greedy algorithms in the context of nonlinear approximation [1]

is very appealing since it greatly reduces the computational bur-

den when compared with standard model selection method using

general dictionaries. This property triggers avid research activities

of greedy algorithms in signal processing [7,17,31], inverse problem

[13,32] and sparse approximation [12,29].

Greedy learning, or more specifically, applying greedy algo-

rithms to tackle supervised learning problems, has been proved

to possess charming generalization capability with lower computa-

tional burden than the widely used coefficient-based regularization

methods [1]. From approximation to learning, greedy learning can

be usually formulated as a four-stage stepwise learning strategy

[35]. The first one is the “dictionary-selection” stage which aims at

selecting a suitable set of candidates to build up the dictionary. The

second one is the “greedy-definition” stage that sets the measure-

ment criterion to choose new atoms (or elements) from the dictio-

nary in each greedy step. The third one is the “iterative-rule” stage
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that defines the estimator based on the selected “greedy atoms”

and the estimator obtained in the previous greedy step. The last

one is the “stopping-criterion” stage which focuses on how to ter-

minate the learning process.

Since greedy learning’s inception in supervised learning [14],

the aforementioned four stages were comprehensively studied for

various purposes. For the “dictionary-selection” stage, Chen et al.

[4] and Lin et al. [18] proposed that the kernel based dictionary is a

good choice for greedy learning. For the “greedy-definition” stage,

Xu et al. [35] pointed out that the metric of greedy-definition is

not uniquely the greediest one. They provided a threshold to dis-

criminate whether a selection is greedy and analyzed the feasibil-

ity of such a discrimination measurement. For the “iterative-rule”

stage, Barron et al. [1] declared that both relaxed greedy iteration

and orthogonal greedy iteration can achieve fast learning rates for

greedy learning. For the “stopping-criterion” stage, Barron et al. [1]

provided an l0 complexity regularization strategy and Chen et al.

[4] proposed an l1 complexity constraint strategy. All these results

showed that as a feasible learning scheme, greedy learning de-

serves comprehensively studying due to its stepwise learning char-

acter [14].

Although the importance of a single stage of greedy learning

was revealed [1,4,18,34], the relationship between these stages and

their composite effects for learning also need classifying. In the re-

cent work [35], Xu et al. established a relationship between the

“greedy-definition” and “stopping-criterion” stages and successfully

reduced the computational cost of greedy learning without sac-

rificing the generalization capability very much. This implies that
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the study of these relationships may bring additional benefits of

greedy learning. In this paper, we aim to study the relationship be-

tween the “dictionary-selection” and “greedy-definition” stages of

orthogonal greedy algorithms (OGA). Our idea mainly stems from

an interesting observation. We observe that if the selected dic-

tionary is an orthogonal basis, then it is not necessary to define

greedy learning as a stepwise strategy. Indeed, due to the orthogo-

nal property, we can select all required atoms from the dictionary

simultaneously. Conversely, if the dictionary is redundant (or linear

dependent), then greedy learning must be defined as a stepwise

strategy due to the redundant property. This implies that certain

specific features of a dictionary can be employed to modify the

greedy definition.

Therefore, if the coherence, a specific feature of a dictionary,

is utilized to describe the dictionary, we can improve the perfor-

mance of OGA in the direction of either reducing the computa-

tional burden or enhancing the generalization capability. In this

paper, we study the learning capability of orthogonal super greedy

algorithm (OSGA) which was proposed by Liu and Temlyakov [19].

OSGA selects more than one atoms from a dictionary in each itera-

tion and hence reduces the computational burden of OGA. The aim

of the present paper can be explained in two folds. The first one is

to study the approximation capability of OSGA and the other is to

pursue its applications in supervised learning.

For OSGA approximation, it was shown in [19] (see also [20])

that with incoherent dictionaries, OSGA can reduce the computa-

tional burden when compared with OGA. It can be found in [19,

Theorem 2] that such a significant computational burden-reduction

does not degrade the approximation capability if the target func-

tions belong to the convex hull of the dictionary. However, such an

assumption to the target functions is very stringent if the dimen-

sion of variable is large [1]. Our purpose is to circumvent the above

problem by deducing convergence rates for functions not simply

related to the convex hull of the dictionary. Interestingly, we find

that, even for functions out of the convex hull of the dictionary,

the approximation capability of OSGA is similar as that of OGA [1].

For OSGA learning, we prove that if the dictionary is incoher-

ent, then OSGA learning with appropriate step-size can reduce the

computational burden of OGA learning further. In particular, using

the established approximation results of OSGA, we can deduce an

almost same learning rate as that of OGA. This means that studying

the relationship between the “dictionary-selection” and “greedy-

definition” stages can build more efficient learning schemes than

OGA. Both numerical simulations and real data experiments illus-

trate the outperformance of OSGA and therefore, verify our theo-

retical assertions.

The paper is organized as follows. In Section 2, we review no-

tations and preliminary results in greedy-type algorithms that are

frequently referred to throughout the paper. In Section 3, we show

the main results of this paper, including a general approximation

theorem for OSGA and its applications in supervised learning. In

Sections 4 and 5, we present a line of simulations and real data ex-

periments to verify our viewpoints. In Section 6, we present proofs

of the main results. In the last section, we further discuss the OSGA

learning and draw a simple conclusion of this paper.

2. Greedy-type algorithms

Let H be a Hilbert space endowed with norm and inner prod-

uct ‖ · ‖ and 〈 ·, ·〉, respectively. Let D = {g}g∈D be a given dictio-

nary. Define L1 = { f : f = ∑
g∈D agg}. The norm of L1 is defined by

‖ f‖L1
:= inf

{∑
g∈D |ag| : f = ∑

g∈D agg
}
. We shall assume here and

later that the elements of the dictionary are normalized according

to ‖g‖ = 1.

There exist several types of greedy algorithms [27]. The four

most commonly used are the pure greedy, orthogonal greedy, re-

laxed greedy and stepwise projection algorithms, which are often

denoted by their acronyms PGA, OGA, RGA and SPA, respectively.

In all the above greedy algorithms, we begin by setting f0 := 0.

The new approximation fk (k ≥ 1) is defined based on fk−1 and its

residual rk−1 := f − fk−1. In OGA, fk is defined as

fk = PVk
f,

where PVk
is the orthogonal projection onto Vk = span{g1, . . . , gk}

and gk is defined as

gk = arg max
g∈D

|〈rk−1, g〉|.
Let

M = M(D) = sup
g�=h,g,h∈D

|〈g, h〉|

be the coherence of the dictionary D. Let s ≥ 1 be a natural num-

ber. Initially, set f s
0

= 0 and rs
0

= f, then the OSGA proposed in [19]

for each k ≥ 1 can be inductively define as the following.

(1) g(k−1)s+1, . . . , gks ∈ D are chosen according to

min
i∈Ik

|〈rs
k−1, gi〉| ≥ sup

g∈D,g�=gi,i∈Ik

|〈rs
k−1, g〉|,

where Ik = [(k − 1)s + 1, ks].

(2) Let Vks = span{g1, . . ., gks} and define

f s
k := PVks

f, (2.1)

and

rs
k = f − f s

k .

The following Lemma 2.1 proved in [19] shows that OSGA can

achieve the optimal approximation rate of ks term nonlinear ap-

proximation [26].

Lemma 2.1. Let D be a dictionary with coherence M. Then, for s ≤
(2M)−1 + 1, the OSGA estimator (2.1) provides an approximation of

f ∈ L1 with the following error bound:

‖rs
k‖2 ≤ 40.5‖ f‖L1

(sk)−1, k = 1, 2, . . ..

3. Approximation and learning by OSGA

In this section, after presenting some basic conceptions of the

statistical learning theory, we deduce a general approximation the-

orem concerning OSGA and pursue its applications in regression.

3.1. Statistical learning theory

In most of machine learning problems, data are taken from two

sets: the input space X⊆Rd and the output space Y⊆R. The relation

between the variable x ∈ X and the variable y ∈ Y is not determin-

istic, and is described by a probability distribution ρ on Z := X ×
Y that admits the decomposition

ρ(x, y) = ρX (x)ρ(y|x),
in which ρ(y|x) denotes the conditional (given x) probability mea-

sure on Y, and ρX the marginal probability measure on X. Let

z = (xi, yi)
n
i=1

be a set of finite random samples of size n, n ∈ N,

drawn identically and independently according to ρ from Z. The

set of examples z is called a training set. Without loss of general-

ity, we assume that |yi| ≤ L for a prescribed (and fixed) L > 0.

The goal of regression is to derive a function f: X → Y from a

training set such that f(x) is an effective and reliable estimate of y

when x is given. A natural measurement of the error incurred by

using f(x) for this purpose is the generalization error, given by

E( f ) :=
∫

Z

( f (x) − y)2dρ,
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