
Knowledge-Based Systems 95 (2016) 114–124

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Credible, resilient, and scalable detection of software plagiarism using

authority histograms

Dong-Kyu Chae a, Jiwoon Ha a, Sang-Wook Kim a,∗, BooJoong Kang b, Eul Gyu Im a,
SunJu Park c

a Department of Computer and Software, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
b School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast BT3 9DT, United Kingdom
c School of Business, Yonsei University, Sinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea

a r t i c l e i n f o

Article history:

Received 12 March 2015

Revised 25 November 2015

Accepted 20 December 2015

Available online 31 December 2015

Keywords:

Software plagiarism detection

Birthmark

Similarity analysis

Static analysis

a b s t r a c t

Software plagiarism has become a serious threat to the health of software industry. A software birthmark

indicates unique characteristics of a program that can be used to analyze the similarity between two pro-

grams and provide proof of plagiarism. In this paper, we propose a novel birthmark, Authority Histograms

(AH), which can satisfy three essential requirements for good birthmarks—resiliency, credibility, and scal-

ability. Existing birthmarks fail to satisfy all of them simultaneously. AH reflects not only the frequency

of APIs, but also their call orders, whereas previous birthmarks rarely consider them together. This prop-

erty provides more accurate plagiarism detection, making our birthmark more resilient and credible than

previously proposed birthmarks. By random walk with restart when generating AH, we make our proposal

fully applicable to even large programs. Extensive experiments with a set of Windows applications verify

that both the credibility and resiliency of AH exceed those of existing birthmarks; therefore AH provides

improved accuracy in detecting plagiarism. Moreover, the construction and comparison phases of AH are

established within a reasonable time.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Software plagiarismis developing software using someone else’s

source code or open source code without a license and disguising

it as original software [1]. As software plagiarism has been increas-

ing significantly, serious economic loss in the software industry has

also been increasing. According to the Business Software Alliance

report,1 the financial damage caused by software plagiarism in the

USA is about 95 million dollars, and the damage in China is about

77 million dollars. To mitigate such economic losses, software de-

velopers need methods to detect software plagiarism.

Recently, software birthmarks (birthmarks) have come under

study. A program’s birthmark represents unique characteristics that

can be used to identify the program [2]. The similarity between

two birthmarks represents how much one program is likely to be

a copy of another. Birthmarks permit a compact analysis of the

∗ Corresponding author. Tel.: +82 10 6749 6392.

E-mail addresses: kyu899@agape.hanyang.ac.kr (D.-K. Chae),

oneofus@agape.hanyang.ac.kr (J. Ha), wook@hanyang.ac.kr (S.-W. Kim),

b.kang@qub.ac.uk (B. Kang), imeg@hanyang.ac.kr (E.G. Im), boxenju@yonsei.ac.kr (S.

Park).
1 BSA Global Software Piracy Study, http://globalstudy.bsa.org/2010.

similarity between a pair of programs without requiring extra data,

such as the source code of the programs in question.

Existing birthmarks can be categorized according to the fol-

lowing criteria. First, depending on the extraction scheme, birth-

marks are categorized as static or dynamic: a static birthmark is

extracted by disassembling a program without execution, and a dy-

namic birthmark is extracted from a program’s runtime behavior

and can be obtained by executing it [1]. Second, depending on the

form of the birthmarks, they are classified as set-based, frequency-

based, and sequence-based.

Regardless of these categories, birthmarks need to be designed

to meet the following requirements [3]:

• Resiliency: Birthmarks should be robust even if plagiarizers

modify the structure of a program slightly or reorder the source

codes statements while preserving the semantics of the pro-

gram.

• Credibility: Birthmarks extracted from independently developed

programs should be dissimilar even if they accomplish similar

tasks.

• Scalability: Birthmarks should be applicable to even large pro-

grams.

http://dx.doi.org/10.1016/j.knosys.2015.12.009

0950-7051/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.knosys.2015.12.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2015.12.009&domain=pdf
mailto:kyu899@agape.hanyang.ac.kr
mailto:oneofus@agape.hanyang.ac.kr
mailto:wook@hanyang.ac.kr
mailto:b.kang@qub.ac.uk
mailto:imeg@hanyang.ac.kr
mailto:boxenju@yonsei.ac.kr
http://globalstudy.bsa.org/2010
http://dx.doi.org/10.1016/j.knosys.2015.12.009


D.-K. Chae et al. / Knowledge-Based Systems 95 (2016) 114–124 115

However, existing birthmarks fail to satisfy all the above re-

quirements at once. We briefly explain, for each category, which

properties are not satisfied and why.

• Static set-based birthmarks: Their credibility is unsatisfactory

because they cannot distinguish two independently developed

programs that inadvertently use several APIs in common. Choi

et al. [4] improved the credibility by separating all APIs into

subsets and labeling each subset with the name of the function

that calls the APIs in the subset. However, that improvement

makes such birthmarks vulnerable to function structure trans-

formations, such as function in-lining and dividing one function

into multiple functions, as demonstrated in our experiments.

They also suffer from the scalability issue because they use the

maximum weighted bipartite matching algorithm, which has a

time complexity of O(n3) for taking all user-defined functions

into account when computing similarity.

• Static frequency-based birthmarks: They are more credible and

scalable than the original set-based birthmarks because they re-

flect API call frequencies. However, they are still likely to lack

credibility if two different programs use many APIs in com-

mon with a similar frequency distribution or use two or three

common APIs whose frequencies are much higher than those of

any other APIs in each program [5]. These drawbacks are also

shown in our experiments.

• Static sequence-based birthmarks: The main problem with these

birthmarks is poor resiliency because assembly instruction or

API sequences can be easily changed by switching some state-

ments in the source code (e.g., function calls or mathematical

operations) while preserving the semantics of the program [6].

Scalability is also a problem because an exponential number

of possible traces exist according to the branches defined in

the program, all of which need to be considered in a similar-

ity computation of the two birthmarks.

• Dynamic birthmarks: Regardless of their form, it is question-

able whether dynamic birthmarks can capture the unique char-

acteristic of a program, which is the fundamental objective

of designing birthmarks [7,8]. Because dynamic birthmarks are

extracted during the execution of some pre-defined scenarios,

only a small part of the program is reflected in the birthmarks.

It does not seem appropriate to consider dynamic birthmarks as

characteristics of a program because they inherit only a small

part while completely ignoring the rest [4,9,10].

In this paper, we propose a novel static birthmark, Authority

Histograms (AH). AH satisfies all three of the requirements above.

Our birthmark is a histogram whose dimension is an API used in

the program, and the value of each dimension indicates an author-

ity score that represents how prominently the corresponding API is

used in the program. We measure the importance of APIs by ana-

lyzing the program’s structural characteristics to figure out which

APIs are in a core position in the program structure and which are

not.2

Specifically, we first construct an API-labeled control flow graph

(A-CFG), which is a graphical representation of a program. A-CFG

has APIs as vertices and call orders among APIs as edges. A-

CFG represents the full structure of the program, having all pos-

sible control flows from the start of the program to its termi-

nation. Next, we measure the authority score of each API based

on the structural characteristics of A-CFG. To compute the author-

ity scores, we use random walk with restart (RWR), a probabilistic

model for a random surfer to reach a web page on a web graph

2 We assume that programs in question are large in size and use a number of

APIs inside (i.e., commercial programs released by software companies). If programs

are small and use few APIs (i.e., toy programs), our proposed method tends not to

work well.

after a given number of iterations. RWR captures which web pages

are authoritative in the graph and gives high authority scores to

those nodes by analyzing the structural characteristics of the graph

[11]. With respect to our work, RWR figures out which APIs are

popularly called in a program by analyzing A-CFG and gives high

authority scores to those APIs. At this step, the authority scores are

affected not only by the number of incoming edges of API nodes

(i.e., call frequency of APIs) but also by the orders of API nodes

[12]. The resulting histogram of the authority scores over all the

APIs becomes AH. Two programs with similar AHs are highly sus-

pected of plagiarism because they not only use similar important

and minor APIs but also have similar structural characteristics.

Our design ensures that AH satisfies the three essential require-

ments as follows. First, by reflecting both the frequency and call

order of APIs, we remedy the deficiencies of the previous set-

based, sequence-based, and frequency-based birthmarks,making

our birthmark more resilient and credible. Generally, API calls are

a common way for a program to request resources or services pro-

vided by the OS. API calls are tightly related to the main func-

tionalities of a program. The importance distribution of APIs for

each program can be unique. Moreover, it is difficult for a plagia-

rist to manipulate the overall call frequency of APIs, the call order

of APIs, or to replace APIs with something else, while maintain-

ing the program’s original semantics [3]. Second, by generating an

n-dimensional histogram that inherits the structural characteristics

of A-CFG, our birthmark makes the problem of comparing two A-

CFGs a quite simple and scalable task. We compute the similarity

between AHs efficiently by using the cosine similarity, a simple and

widely used similarity measure.

Based on our proposal, we implemented the AH-based soft-

ware plagiarism detection method. Given original and suspicious

programs, we first constructed A-CFGs for each program. Then we

generated AHs from each A-CFG and computed their similarity.

Based on the similarity value, we determined whether the suspi-

cious program was copied from the original one.3 We used a set of

Windows programs and performed extensive experiments. We ob-

served that AH outperforms previous state-of-the-art static birth-

marks in terms of resiliency and credibility, thereby providing im-

proved accuracy in detecting plagiarism. We also observed that the

extraction and comparison of AH birthmarks could be completed

within a reasonable time.

The initial idea of this paper was presented with some pre-

liminary experimental results at ACM CIKM 2013 as a short pa-

per [17]. This paper is an extended version of it. The main dif-

ferences can be clarified as follows. In the extended version, we

explain both our proposed method and previous work in more de-

tail. Also, we have conducted more extensive experiments than de-

scribed in our previous paper: (1) we additionally implement Flow-

Path birthmark, a state-of-the-art sequence-based birthmark, and

perform comparative experiments using it and our method; (2) we

generate two kinds of real plagiarized samples (one with changed

compiler optimization options and the other manually transformed

by human experts), and perform experiments with the plagiarized

samples; (3) we perform scalability testing by measuring execu-

tion times for every method according to the size of the target

programs.

The rest of this paper is organized as follows. Section 2 briefly

reviews some methods for detecting software plagiarism. Section 3

explains in detail AH’s definition, generation procedure, and simi-

larity computation. Section 4 evaluates our AH based software pla-

giarism detection method by comparing it with previous methods

3 We note that our scope is to provide the similarity between two programs in

question. Deciding which program is the original one is out of the scope of this

paper.



Download English Version:

https://daneshyari.com/en/article/402559

Download Persian Version:

https://daneshyari.com/article/402559

Daneshyari.com

https://daneshyari.com/en/article/402559
https://daneshyari.com/article/402559
https://daneshyari.com

