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a b s t r a c t

In this paper, an efficient feature extraction algorithm called discriminant sparse local spline embedding
(D-SLSE) is proposed for face recognition. A sparse neighborhood graph of the input data is firstly
constructed based on a sparse representation framework, and then the low-dimensional embedding of
the data is obtained by faithfully preserving the intrinsic geometry of the data samples based on such
sparse neighborhood graph and best holding the discriminant power based on the class information of
the input data. Finally, an orthogonalization procedure is perfomred to improve discriminant power.
The experimental results on the two face image databases demonstrate that D-SLSE is effective for face
recognition.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that there are large volumes of
high-dimensional data in numerous real-world applications.
Operating directly on such high-dimensional image space is
ineffective and may lead to high computational and storage
demands as well as poor performance. From the perspective of
pattern recognition, dimensionality reduction is a typical way to
circumvent the ‘‘curse of dimensionality’’ problem [1] and
other undesired properties of high-dimensional spaces. The goal
of dimensionality reduction is to construct a meaningful
low-dimensional representation of high-dimensional data. Ideally
the reduced representation in the low-dimensional space should
have a dimensionality that corresponds to the intrinsic dimension-
ality of the data.

Researchers have developed many useful dimensionality reduc-
tion techniques. These techniques can be broadly categorized into
two classes: linear and nonlinear. Classical linear dimensionality
reduction approaches seek to find a meaningful low-dimensional
subspace in a high-dimensional input space by linear

transformation. This subspace can provide a compact representa-
tion of high-dimensional input data when the intrinsic structure
of data embedded in the input space is linear. Among them, the
most well known are principal component analysis (PCA) [2] and
linear discriminant analysis (LDA) [3]. Linear models have been
extensively used in pattern recognition and computer vision
areas and have become the most popular techniques for face
recognition [4–8].

Linear techniques, however, may fail to discover the intrinsic
structures of complex nonlinear data. In order to address this prob-
lem, a number of nonlinear manifold learning techniques have
been proposed under the assumption that the input data set lies
on or near some low-dimensional manifold embedded in a
high-dimensional unorganized Euclidean space [9]. The motivation
of manifold learning techniques is straightforward as it seeks to
directly find the intrinsic low-dimensional nonlinear data struc-
tures hidden in the observation space. Examples include isometric
feature mapping (ISOMAP) [10], locally linear embedding (LLE)
[11], Laplacian eigenmaps (LE) [12], Hessian-based locally linear
embedding (HLLE) [13], maximum variance unfolding (MVU)
[14], manifold charting [15], local tangent space alignment
(LTSA) [16], Riemannian manifold learning (RML) [17], and local
spline embedding (LSE) [18], elastic embedding (EE) [19], Cauchy
graph embedding (CGE) [20], adaptive manifold learning [21],
and neighborhood preserving polynomial embedding (NPPE) [22].
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Each manifold learning algorithm attempts to preserve a different
geometrical property of the underlying manifold. Local approaches,
such as LLE, HLLE, LE, LTSA, and LSE, aim to preserve the proximity
relationship among the data, while global approaches like ISOMAP
and LOGMAP aim to preserve the metrics at all scales. Some exper-
iments have shown that these methods can find perceptually
meaningful embeddings for face or digit images. They also do yield
impressive results on other artificial and real-world data sets.
However, these manifold learning methods have to confront with
the out-of-sample problem when they are applied to pattern
recognition. They can yield an embedding directly based on the
training data set, but, because of the implicitness of the nonlinear
map, when applied to a new sample, they cannot find the image of
the sample in the embedding space. It limits the applications of
these algorithms to pattern recognition problems. To overcome
the drawback, Bengio et al. proposed a kernel method to embed
the new data points by utilizing the generalization ability of
Mercer kernel [23]. He et al. proposed a method named locality
preserving projection (LPP) to approximate the eigen-functions of
the Laplace–Beltrami operator on the manifold and the new testing
points can be mapped to the learned subspace without trouble
[24]. Yan et al. utilized the graph embedding framework for devel-
oping a novel algorithm called marginal Fisher analysis (MFA) to
solve the out-of-sample problem [25].

Recently, sparse representation has attracted considerable
interests in machine learning and pattern recognition. Some
researchers proposed some new methods integrating the theory
of sparse representation and subspace learning. They are consid-
ered as a special family of dimensionality reduction methods
which consider ‘‘sparsity’’. It has either of the following two
characteristics: (1) Finding a subspace spanned by sparse base
vectors. The sparsity is enforced on the projection vectors and
associated with the feature dimensionality. The representative
techniques are sparse principal component analysis (SPCA) [26]
and nonnegative sparse PCA [27]. (2) Aiming at the sparse recon-
structive weight which is associated with the sample size. The
representative methods include sparse neighborhood preserving
embedding (SNPE) [28] and sparsity preserving projections
(SPP) [29].

In this paper, inspired by the idea of LSE [18] and sparse repre-
sentation, we propose a novel sparse subspace learning technique,
called discriminant sparse local spline embedding (D-SLSE).
Specifically, A sparse neighborhood graph of the input data is
firstly constructed based on a sparse representation framework,
and then the low-dimensional embedding of the data is obtained
by faithfully preserving the intrinsic geometry of the data samples
based on such sparse neighborhood graph and best holding the dis-
criminant power based on the class information of the input data.
Finally, an orthogonalization procedure is perfomred to improve
discriminant power. We now enumerate several characteristics of
our proposed algorithm as follows:

(1) D-SLSE does not have to encounter setting the neighborhood
size in constructing a neighborhood graph incurred in LSE.
An unsuitable neighborhood may result in ‘‘short-circuit’’
edges (see Fig. 1a) or a large number of disconnected regions
(see Fig. 1b). In contrast, graph construction based on sparse
representation makes our proposed method very simple to
use in practice.

(2) D-SLSE computes an explicit linear mapping from the input
space to the reduced space, which attempts to manage the
trade-off between holding discriminant power and preserv-
ing local geometry structure.

(3) D-SLSE seeks to find a set of orthogonal basis functions and
significantly improves its recognition accuracy.

The rest of this paper is organized as follows: The D-SLSE algo-
rithm is developed in Section 2. Section 3 demonstrates the exper-
imental results. Finally, conclusions are presented in Section 4.

2. Discriminant sparse local spline embedding

2.1. Local spline embedding

Xiang et al. [18] proposed a general dimensionality reduction
framework called compatible mapping. They used the compatible
mapping framework as a platform and developed a novel local
spline embedding (LSE) manifold learning algorithm. This method
includes two steps: part optimization and whole alignment. Each
data point is represented in different local coordinate systems by
part optimization. But its global coordinate should be maintained
unique. Whole spline alignment is used to achieve this goal. The
algorithmic procedure is listed as follows:

1. Constructing the adjacency graph: Let G denote a graph with n
nodes. We use KNN criterion to construct the adjacency graph,
i.e., putting an edge between nodes i and j if i is among k nearest
neighbors of j or j is among k nearest neighbors of i.

2. Obtaining tangent coordinates: For each data point xi, Let

Xi ¼ ½xi1 ; xi2 ; . . . ; xik � 2 RD�k denote its k nearest neighbors.
Perform a singular decomposition of the centralized matrix of
Xi, we have

XiHk ¼ Ui

X
i

0ðD�kÞ�k

2
4

3
5VT

i ; i ¼ 1; . . . ;n; ð1Þ

where Hk ¼ I � ekeT
k=k is the centering operator, I is a

k� k identity matrix, ek is a k-dimensional vector with

ek ¼ ½1;1; . . . ;1�T 2 Rk;
P

i ¼ diagðr1; . . . ;rkÞ contains the
singular values in descending order. Ui is a D� D matrix whose
column vectors are the left singular vectors, and Vi is a k� k
matrix whose column vectors are the right singular vectors.
The local tangent coordinates Hi of Xi can be obtained from
the following formula:

Hi ¼ ðUiÞT XiHk ¼ ½hðiÞ1 ; h
ðiÞ
2 ; . . . ; hðiÞk �; i ¼ 1; . . . ;n; ð2Þ

where hðiÞj is the local tangent coordinate of the jth nearest neigh-
bor of the data point xi.

3. Aligning global coordinates: For the ith local tangent space

projection Hi, let Yi ¼ ½yi1
; yi2

; . . . ; yik
� 2 Rd�k contain the corre-

sponding global coordinates of the k data points. Further,

denote the rth row of Yi by ½yðrÞi1
; yðrÞi2

; . . . ; yðrÞik
�. We determine

the d spline functions gðrÞi : Rd
# R; r ¼ 1;2; . . . ; d, such that the

coordinate components can be faithfully mapped:

yðrÞij
¼ gðrÞi ðh

ðiÞ
j Þ; j ¼ 1;2; . . . ; k: ð3Þ

(a) K=8                                (b) K=2

Fig. 1. The K-nearest neighborhood graph of Swiss roll data. (a) Short-circuit edge.
(b) Disconnected regions.
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