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a b s t r a c t

Tensor analysis is a powerful tool for multiway problems in data mining, signal processing, pattern recog-
nition and many other areas. Nowadays, the most important challenges in tensor analysis are efficiency
and adaptability. Still, the majority of techniques are not scalable or not applicable in streaming settings.
One of the promising frameworks that simultaneously addresses these two issues is Incremental Tensor
Analysis (ITA) that includes three variants called Dynamic Tensor Analysis (DTA), Streaming Tensor
Analysis (STA) and Window-based Tensor Analysis (WTA). However, ITA restricts the tensor’s growth
only in time, which is a huge constraint in scalability and adaptability of other modes. We propose a
new approach called multi-aspect-streaming tensor analysis (MASTA) that relaxes this constraint and
allows the tensor to concurrently evolve through all modes. The new approach, which is developed for
analysis-only purposes, instead of relying on expensive linear algebra techniques is founded on the his-
togram approximation concept. This consequently brought simplicity, adaptability, efficiency and flexi-
bility to the tensor analysis task. The empirical evaluation on various data sets from several domains
reveals that MASTA is a potential technique with a competitive value against ITA algorithms.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Tensor decomposition is a powerful technique for the analysis
of multiway data in psychometrics, chemometrics, network infor-
mation systems, pattern recognition and data mining [1]. The
growing interest in tensors is due to their capability of discovering
complicated patterns in multiway settings that is impossible via
other methods. Many techniques are developed for tensor decom-
position, but two of the most popular ones are Tucker [2] and
PARAFAC [3]. Both of these models suffer from two major issues.
Firstly, they are not scalable to large size data sets due to their
time/space complexity; and secondly, are not updatable when a
new stream of data is retrieved.

The scalability issue is already addressed in three major groups
of solutions, including sparse-optimized methods, parallel and dis-
tributed techniques and GPU-based solutions. For instance, in [4] a
new extension of Tucker decomposition is proposed, called
Memory-efficient Tucker (MET) that its space complexity scales
up to the non-zero elements in tensor (i.e. O(nz)). In [5] a dis-
tributed version of PARAFAC is implemented in MapReduce [6]
scaling PARAFAC decomposition up to 100 times for sparse tensors.
A different distributed framework is proposed in [7,8] for PARAFAC

that divides the tensors into some small sub-tensors and solve
sub-tensors problems in different machines. Similar to these
works, [9] proposes a parallelized version of PARAFAC called
ParCube which is optimized for sparse tensors and provides 14
times acceleration in runtime. In [10] a new method is proposed
based on general-purpose computing, on the GPU that operates
360 times faster than the regular PARAFAC decomposition.

Although the above techniques are great tools for dealing with
large tensors, they suffer from the non-adaptability problem. This
means that when new data is received we have to rebuild the
model from scratch. In addition, sparsity-optimized techniques
such as MET also do not have any added value for dense tensors,
because they only scale up when there is a considerable amount
of zero elements in the tensor. Furthermore, the parallelization of
tensor decompositions is not as straightforward and it requires
extra hardware and software infrastructures.

The pioneer research studies on this problem are those per-
formed by [11–13] who propose some streaming approximation
solutions for tensor decomposition in an unified framework called
Incremental Tensor Analysis (ITA). The ITA solution, opposed to
other scalable decomposition techniques does not need any special
infrastructure. It also does not make any restrictive assumption
like sparsity. It performs tensor decomposition on each tensor in
each time instant, maintains some statistics and then incorporates
that for the processing of the next tensor. Therefore, it does not
require keeping historical data in the memory. This solution has
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two advantages. First, tensor model is easily updatable when new
data arrives, and second, the space required for decomposition of
the tensor becomes independent of stream length.

The merits of ITA and its usefulness to the analysis of
time-evolving tensors are investigated in many studies, so that
nowadays, ITA is recognized as the state-of-the-art solution for
streaming tensor analysis. However, although ITA allows the ten-
sor to evolve infinitely in time, it makes a restrictive assumption
that the dimension of the tensor remains constant during the pro-
cess. We may not find this limitation annoying for only-time-
evolving tensors like network traffic or video streams, when the
number of nodes or image frames remain constant during the anal-
ysis. But, we may deeply feel this constraint in dealing with
multi-aspect-evolving tensors such as social networks, where the
number of nodes grows during the evolution of the network. Or
in recommendation systems when new users are joined to the sys-
tem, and size of user � profile matrix consistently changes. Aside
from that, ITA encounters the intermediate data explosion problem
[5,14] as well as its offline counterparts when the size of the tensor
is large.

The intermediate data explosion problem corresponds to the
heart of the these techniques, i.e. space-inefficient linear algebra
computations that operate directly on the input data. Therefore,
in these methods, space efficiency is more influenced by the size
of input data rather than the method per se. However, we know
that a large portion of tensor decomposition applications is related
to analysis-only tasks such as anomaly detection (e.g. [15–18]) or
simple data analysis (e.g. [19–22]). In such applications, computing
the exact subspace of the tensor may not seem mandatory, as
opposed to other applications such as compression where the
reconstruction of tensor is inevitable. Can we find an alternative
adaptive solution for tensor analysis that on one hand avoids
space-inefficient computations and on the other hand provides
the basic analytical power of tensor decomposition?

We know that histograms are central tools for summarization
in data mining. They are also the key technique in image retrieval
for measuring similarity between images. Is it possible to extend
these ideas to tensor analysis problem? We may find a positive
answer for this question, but two more questions will be raised
in the following: (a) how do we deal with the huge space/time
complexity of histograms while we actually require an efficient
method?; (b) is it conceivable to utilize a non-adaptive tool like
histogram for solving a streaming problem?

In this research, we tackle these problems by recommending a
histogram-based solution that allows the tensor to simultaneously
evolve through all modes. We initiate with the description of fun-
damental concepts such as histograms, tensor segmentation and
distribution matching and proceed to develop the first basic
approach for histogram-based tensor analysis. Furthermore, we

extend the baseline solution to the multi-aspect-streaming scheme
(see Fig. 1) by replacing the conventional histogram with a recent
incremental approach. To the best of our knowledge the applica-
tion of histograms in tensor analysis is not reported elsewhere.
This is also the first work that addresses the multi-aspect-
streaming tensor analysis problem.

The rest of the paper is organized as follows: Section 2 outlines
the preliminary concepts. In Section 3 we describe the proposed
method. We introduce a new evaluation methodology in
Section 4 and later employ it for assessment of the proposal in
Section 5. Next, in Section 6 we illustrate the application of the
proposed approach on two real case studies. The last section con-
cludes the exposition, presenting the final remarks.

2. Preliminary concepts

Following [23], throughout the paper, scalars are denoted by
non-bold lowercase letters (e.g. i), vectors are denoted by boldface
lowercase letters (e.g. a), matrices are denoted by boldface capital
letters (e.g. A) and tensors are denoted by Calligraphic letters (e.g.
X). In the following we define the necessary concepts required for
further description of the proposed methodology. More compre-
hensive discussion about tensors and their application can be
found in survey papers [23,1].

2.1. Tensor

A tensor is a multi-dimensional array and the order of a tensor
is the number of dimensions, also known as ways or modes.
Vectors, matrices and tensors respectively, are equivalent to first,
second and dth order tensor where d P 3.

2.2. Slice

A slice is a (d-1)-dimension partition of tensor when an index is
fixed in one mode and the indices vary in the other modes. The
horizontal, lateral, and frontal slides of a third-order tensor X,
are denoted by Xi::;X:j:, and X ::k, respectively. Each slice in each
mode corresponds to an entity (or feature). For instance, in a
three-order tensor of country� year �measurement, the country
‘‘Portugal’’ is a feature in the first mode. The year 2014 is an entity
in the second mode and ‘‘population’’ or ‘‘GDP’’ are the features in
the third mode.

3. Histogram-based tensor analysis

Histograms are simple statistical tools that have been applied in
a wide range of applications [24]. They are simple, non-parametric

Fig. 1. Comparison of multi-aspect-streaming tensor analysis (proposed) versus streaming tensor analysis (state-of-the-art).
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