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a b s t r a c t

In recent years, a great deal of manifold clustering algorithms was presented to identify the subsets of the
manifolds data. Meanwhile, numerous classification algorithms were also developed to classified data
shaped in the form of manifold. However, nearly none of them pay attention to the statistical relationship
between the manifold structures and class labels, thus failing to discover the knowledge concealed in
data. In this paper, a manifold learning framework for both clustering and classification is presented,
which involves two steps. In the first step, the clustering through ranking on manifolds is executed to
explore structures in data; in the second step, the class posterior probability is calculated by using the
Bayesian rule. The core of this framework lies in employing the Bayesian theory to establish the relation-
ship between manifolds and classes thus creates a bridge between clustering learning and classification
learning. Our new manifold learning framework is interesting from a number of perspectives: (1) our
algorithm can perform manifold clustering learning which can auto-determine the clustering parameters
without manual determining; (2) our algorithm can perform manifold classification learning which
models the posterior probabilities pðxljxiÞ by using the Bayesian rule; (3) our algorithm can provide
the statistical relationship between the manifold structure and the given classes. Encouraging experi-
mental results are obtained on 2 artificial and 16 real-life benchmark datasets.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Data mining [1–3] is the discovery of interesting relationships
and characteristics that may exist implicitly in data. Clustering
and classification are two primary data-mining techniques [4,5].
The clustering approaches such as K-Means [6], Fuzzy C-Means
(FCM) [7] and Gaussian Mixture Model [8] are widely utilized to
discover the hidden structure in data. Whereas the classification
approaches such as Multi-layer Perceptron (MLP) [9] and Support
Vector Machines (SVM) [10,11] are successfully applied to deter-
mine the class labels of unseen samples. To fuse the advantages
of clustering and classification together, numerous researchers
studied on how to design a single approach for both clustering
and classification. To bridge clustering and classification, Setnes
and Babuŝka [12] proposed Fuzzy Relational Classifier (FRC) which
attempted to utilize the fuzzy composite operators to construct the
relationship between the cluster structures and classes. To
enhance the robustness of FRC, in one of our previous works, we
developed Robust Fuzzy Relational Classifier (RFRC) [13] by replac-
ing FCM and hard class labels with Kernelized FCM (KFCM) [14,15]
and soft labels, respectively. Another famous classifier is Radial

Basis Function neural networks (RBFNN) [16,17] which extracts
significant information from the observed data to construct its hid-
den layer.

However, all above algorithms are relatively suitable for the
data shaped in the form of point clouds (group), but unsuitable
for those data in the form of manifold structure. In real-life world,
there are quite a number of data that form paths through a high-
dimensional and expose manifold structure. For instance, motion
segmentation problem in computer vision, the point correspon-
dences in a dynamic scene can generally be represented as mani-
fold; in classification of face images, the faces of person lie on
the manifold. For these data exhibiting manifold structure rather
than compact shape, a considerable number of clustering algo-
rithms such as Spectral Clustering [18,19] have been presented
to identify the subsets of the manifolds data. Numerous research
studies proved that incorporating the structure information into
a classifier can enhance its generalization ability, and this research
finding is consistent with the famous No Free Lunch (NFL) theorem
[20]. In the last decade, a number of manifold or subspace classifi-
cation algorithms such as Plane-Gaussian Function Networks
(PGFN) [21], Laplacian Regularized Least Square Classification
(LapRLSC) [22,23] and Laplacian SVM (LapSVM) [24] were pre-
sented. These algorithms only attempt to integrate the manifold
or subspace distribution information into the classification model.
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However, nearly none of them pay attention to the underlying rela-
tionship between the manifold distribution and given classes, thus
unable to discover the knowledge concealed in data. As a result, an
open and challenging problem is to design a framework for mani-
fold data with the goal of combining the advantages of clustering
and classification and meanwhile revealing the statistical relation-
ship between manifolds and classes.

In this paper, we propose a manifold learning framework for
both clustering and classification (MCC). MCC aims to discover
the manifold structure hidden in data, design an effective and
transparent classification mechanism and meanwhile exploit the
relationship between manifolds and classes. To achieve these
goals, our framework treats the manifold clustering learning and
classification learning in a two-step sequential manner. In the first
step, the clustering through ranking on manifolds is performed to
explore structures in data; in the second step, by using the Baye-
sian rule, the class posterior probability is calculated to give class
labels for unseen samples. It is worth mentioning that the number
of manifolds (i.e. clusters) has a significant influence on the result
of manifold clustering [25–27]. To auto-determine this parameter
in our algorithm, the inter-cluster mean distance by ranking on
manifolds is maximized and while the intra-cluster mean distance
is minimized. As a result, our algorithm can auto-determine the
clustering parameters without manual determining. Another key
of this framework is to connect the multi-manifold with the given
classes employ, and then establish a relationship between them.
This relationship creates a bridge between clustering learning
and classification learning. Based on such relationship, our frame-
work cannot only group multi-manifold into different clusters, but
also make classification decisions for unseen samples. More impor-
tantly, this relationship can successfully reflect the probability and
statistics meaning between manifold structures and given classes,
so that we gain some meaningful insights to make MCC prone to be
transparent.

The new manifold learning framework for both clustering and
classification is interesting from a number of perspectives:

(1) Our algorithm can perform manifold clustering learning
which can auto-determine the clustering parameters with-
out manual determining.

(2) Our algorithm can perform manifold classification learning
which models the posterior probabilities pðxljxiÞ by using
the Bayesian rule.

(3) Our algorithm can provide the statistical relationship
between the manifold structure and the given classes.

The experimental results on both synthetic and real-life data-
sets all demonstrate the effectiveness and potential of MCC.

The rest of this paper is organized as follows: Section 2 reviews
the related works. Section 3 describes the proposed manifold
learning framework for both clustering and classification. Prelimi-
nary experimental results are shown in Section 4. Finally, we give
concluding remarks and future work in Section 5.

2. Related works

There have been several recent related works to inherit the
merits of both clustering and classification learning. We review
the main works as follows.

2.1. Fuzzy relational classifier

Fuzzy Relational Classifier (FRC) [12] was proposed to provide a
transparent alternative to the black-box techniques such as neural
networks. As show in Fig. 1, in FRC, FCM is firstly adopted as the

clustering criterion to discover the natural structure in data, and
its objective function is as follows:

JFCMðU;VÞ ¼
Xc
j¼1

Xn
i¼1

u2
ji xi � vj

�� ��2; ð1Þ

where fx1;x2; . . . ; xng and fv1;v2; . . . ;vcg are the training samples
and cluster centers, respectively; and uji is the fuzzy memberships
of xi to vj. By definition, each sample xi satisfies the constraintPc

j¼1uji ¼ 1. And then, a relation matrix R is computed for the
obtained fuzzy partition and the given hard class labels. In FRC,
FCM is unable to group the datasets consisting of the non-
spherical clusters, so that the interpretation of the clustering or
classification results may be biased.

Afterwards, we have presented Robust FRC (RFRC) [13] to
improve both clustering and classification performance of FRC in
our previous work. Specifically, in the clustering phase, the robust
Kernelized FCM (KFCM) [14,15] is adopted to replace FCM which
can be described as below:

JKFCMðU;VÞ ¼
Xc
j¼1

Xn
i¼1

um
ji /ðxiÞ � /ðvjÞ
�� ��2; ð2Þ

where / is an implicit nonlinear map from the input space to a
rather high dimensional feature space. Compared to FCM, KFCM
based on RBF kernel is a robust estimator according to
M-estimator and is more flexible for clustering non-spherical data.
Next, in the classification phase, the soft class label motivated by
the fuzzy k-nearest-neighbor [28] is employed to replace the hard
class label. With the incorporation of both KFCM and the soft class
labels, RFRC makes the constructed relation matrix R more really
reflect the relationship between the classes and clusters, and thus
significantly boosts the performance of FRC.

It is worth to point out that in FRC and RFRC, the entries in the
relation matrix R lack the statistical meaning, thus it is difficult to
judge whether the obtained relationship is really reliable.

2.2. Radial basis function neural networks

Radial Basis Function neural networks (RBFNN) [16,17], as
shown in Fig. 2, is a feed-forward multi-layer network. It usually
consists of three layers: input layer, hidden layer and output layer.
Each basis function Uk corresponds to a hidden unit and wkl repre-
sents the weight from the kth basis function or hidden unit to the
lth output units.

In the training phase of RBFNN, the basis function Uk for each
hidden node can be determined by

URBF
k x;vkð Þ ¼ exp

� x� vkk k2
2r2

 !
; ð3Þ
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Fig. 1. Training process of FRC and RFRC.
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