
A user-extensible and adaptable parser architecture q

John Tobin *, Carl Vogel
School of Computer Science and Statistics, Trinity College, Dublin 2, Ireland

a r t i c l e i n f o

Article history:
Available online 19 January 2009

Keywords:
Parsing
Postfix
Anti-spam
Log files

a b s t r a c t

Some parsers need to be very precise and strict when parsing, yet must allow users to easily adapt or
extend the parser to parse new inputs, without requiring that the user have an in-depth knowledge
and understanding of the parser’s internal workings. This paper presents a novel parsing architecture,
designed for parsing Postfix log files, that aims to make the process of parsing new inputs as simple as
possible, enabling users to trivially add new rules (to parse variants of existing inputs) and relatively eas-
ily add new actions (to process a previously unknown category of input). The architecture scales linearly
or better as the number of rules and size of input increases, making it suitable for parsing large corpora or
months of accumulated data.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The architecture described herein was developed as part of a
larger project to improve anti-spam defences by analysing the per-
formance of the set of filters currently in use, optimising the order
and membership of the set based on that analysis, and developing
supplemental filters where deficiencies are identified. Most anti-
spam techniques are content-based (e.g. [6,3,10]) and require the
mail to be accepted before determining if it is spam, but rejecting
mail during the delivery attempt is preferable: senders of non-
spam mail that is mistakenly rejected will receive an immediate
non-delivery notice; resource usage is reduced on the accepting
mail server (allowing more intensive content-based techniques
to be used on the mail that is accepted); users have less spam mail
to wade through. Improving the performance of anti-spam tech-
niques that are applied when mail is being transferred via Simple
Mail Transfer Protocol (SMTP)1 is the goal of this project, by provid-
ing a platform for reasoning about anti-spam filters. The approach
chosen to measure performance is to analyse the log files produced
by the SMTP server in use, Postfix [12], rather than modifying it to
generate statistics: this approach improves the chances of other sites
testing and using the software. The need arose for a parser capable of
dealing with the great number and variety of log lines produced by
Postfix: the parser must be designed so that adding support for pars-

ing new inputs is a simple task, because the log lines to be parsed
will change over time. The variety in log lines occurs for several
reasons:

� Log lines differ amongst versions of Postfix.
� The mail administrator can define custom rejection messages.
� External resources Postfix is configured to use (e.g. DNS Black

List or policy servers [13]) can change their messages without
warning.

It was hoped to reuse an existing parser rather than writing one
from scratch, but the existing parsers considered were rejected for
one or more of the following reasons: they parsed too small a frac-
tion of the log files; their parsing was too inexact; they did not ex-
tract sufficient data. The effort required to adapt and improve an
existing parser was judged to be greater than the effort required
to write a new one, because the techniques used by the existing
parsers severely limited their potential: some ignored the majority
of log lines, parsing specific log lines accurately, but without any
provision for parsing new or similar log lines; others sloppily
parsed the majority of log lines, but were incapable of distinguish-
ing between log lines of the same category, e.g. rejecting a mail
delivery attempt. The only prior published work on the subject of
parsing Postfix log files that the authors are aware of is Log Mail
Analyser: Architecture and Practical Utilizations [4], which aims to
extract data from log files, correlate it, and present it in a form suit-
able for a systems administrator to search using the myriad of
standard Unix text processing utilities already available. A full
state of the art review is outside the scope of this paper but will
be included in the thesis resulting from this work.

The solution developed is conceptually simple: provide a few
generic functions (actions), each capable of dealing with an entire

0950-7051/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.knosys.2008.10.011

q Supported by Science Foundation Ireland RFP 05/RF/CMS002.
* Corresponding author.

E-mail addresses: tobinjt@cs.tcd.ie (J. Tobin), vogel@cs.tcd.ie (C. Vogel).
1 Simple Mail Transfer Protocol transfers mail across the Internet from the sender

to one or more recipients. It is a simple, human readable, plain text protocol, making
it quite easy to test and debug problems with it. The original protocol definition is RFC
821 [9], updated in RFC 2821 [8].

Knowledge-Based Systems 22 (2009) 516–522

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys

mailto:tobinjt@cs.tcd.ie
mailto:vogel@cs.tcd.ie
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


category of inputs (e.g. rejecting a mail delivery attempt), accom-
panied by a multitude of precise patterns (rules), each of which
matches all inputs of a specific type and only that type (e.g. rejec-
tion by a specific DNS Black List). It is an accepted standard to sep-
arate the parsing procedure from the declarative grammar it
operates with; part of the novelty here is in the way that the gram-
mar is itself partially procedural (each action is a separate proce-
dure). This architecture is ideally suited to parsing inputs where
the input is not fully understood or does not conform to a fixed
grammar: the architecture warns about unparsed inputs and other
errors, but continues parsing as best it can, allowing the developer
of a new parser to decide which deficiencies are most important
and require attention first, rather than being forced to fix the first
error that arises.

2. Architecture

The architecture is split into three sections: framework, actions
and rules. Each will be discussed separately, but first an overview:

Framework: The framework is the structure that actions and
rules plug into. It provides the parsing loop, shared data storage,
loading and validation of rules, storage of results, and other
support functions.
Actions: Each action performs the work required to deal with a
single category of inputs, e.g. processing data from rejections.
Rules: The rules are responsible for classifying inputs, specifying
the action to invoke and the regex that matches the inputs and
extracts data.

For each input the framework tries each rule in turn until it
finds a rule that matches the input, then invokes the action speci-
fied by that rule.

Decoupling the parsing rules from their associated actions al-
lows new rules to be written and tested without requiring modifi-
cations to the parser source code, significantly lowering the barrier
to entry for casual users who need to parse new inputs, e.g. part-
time systems administrators attempting to combat and reduce
spam; it also allows companies to develop user-extensible parsers
without divulging their source code. Decoupling the actions from
the framework simplifies both framework and actions: the frame-
work provides services to the actions, but does not need to perform
any tasks specific to the input being parsed; actions benefit from
having services provided by the framework, freeing them to con-
centrate on the task of accurately and correctly processing the
information provided by rules.

Decoupling also creates a clear separation of functionality: rules
handle low level details of identifying inputs and extracting data;
actions handle the higher level tasks of assembling the required
data, dealing with the intricacies of the input being parsed, compli-
cations arising, etc.; the framework provides services to actions
and manages the parsing process.

Some similarity exists between this architecture and William
Wood’s Augmented Transition Networks (ATN) [15], used in Com-

putational Linguistics for creating grammars to parse or generate
sentences. The resemblance between the two (shown in Table 1.
(Similarities with ATN)) is accidental, but it is obvious that the
two approaches share a similar division of responsibilities, despite
having different semantics.

2.1. Framework

The framework takes care of miscellaneous support functions
and low level details of parsing, freeing the programmers writing
actions to concentrate on writing productive code. It links actions
and rules, allowing either to be improved independently of the
other. It provides shared storage to pass data between actions,
loads and validates rules, manages parsing, invokes actions, tracks
how often each rule matches to optimise rule ordering (Section
3.2), and stores results in the database. Most parsers will require
the same basic functionality from the framework, plus some spec-
ialised support functions. The framework is the core of the archi-
tecture and is deliberately quite simple: the rules deal with the
variation in inputs, and the actions deal with the intricacies and
complications encountered when parsing.

The function that finds the rule matching the input and invokes
the requested action can be expressed in pseudo-code as:

for each input:

for each rule defined by the user:

if this rule matches the input:

perform the action specified by the rule

skip the remaining rules

process the next input

warn the user that the input was not parsed

2.2. Actions

Each action is a separate procedure written to deal with a par-
ticular category of input, e.g. rejections. The actions are parser-spe-
cific: each parser author will need to write the required actions
from scratch unless extending an existing parser. It is anticipated
that parsers based on this architecture will have a high ratio of
rules to actions, with the aim of having simpler rules and clearer
distinctions between the inputs parsed by different rules. In the
Postfix log parser developed for this project there are 18 actions
and 169 rules, with an uneven distribution of rules to actions as
shown in Fig. 1. Unsurprisingly, the action with the most associ-
ated rules is DELIVERY_REJECTED, the action that handles Postfix
rejecting a mail delivery attempt; it is followed by SAVE_DATA, the
action responsible for handling informative log lines, supplement-
ing the data gathered from other log lines. The third most common
action is, perhaps surprisingly, UNINTERESTING: this action does
nothing when executed, allowing uninteresting log lines to be
parsed without causing any effects (it does not imply that the input
is ungrammatical or unparsed). Generally rules specifying the
UNINTERESTING action parse log lines that are not associated with
a specific mail, e.g. notices about configuration files changing. The
remaining actions have only one or two associated rules: some ac-
tions are required to address a deficiency in the log files, or a com-
plication that arises during parsing; other actions will only ever
have one log line variant, e.g. all log lines showing that a remote
client has connected are matched by a single rule and handled
by the CONNECT action.

Using the CONNECT action as an example: it creates a new data
structure in memory for the new client connection, saving the data
extracted by the rule into it; this data will be entered into the data-
base when the mail delivery attempt is complete. If a data struc-

Table 1
Similarities with ATN.

ATN Parser
architecture

Similarity

Networks Framework Determines the sequence of transitions or actions
that constitutes a valid input

Transitions Actions Assembles data and imposes conditions the input
must meet to be accepted as valid

Abbreviations Rules Responsible for classifying input

J. Tobin, C. Vogel / Knowledge-Based Systems 22 (2009) 516–522 517



Download English Version:

https://daneshyari.com/en/article/402680

Download Persian Version:

https://daneshyari.com/article/402680

Daneshyari.com

https://daneshyari.com/en/article/402680
https://daneshyari.com/article/402680
https://daneshyari.com

