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a b s t r a c t

A hierarchical paradigm for bipedal walking which consists of 4 layers of learning is introduced in this
paper. In the Central Pattern Generator layer some Learner-CPGs are trained which are made of coupled
oscillatory neurons in order to generate basic walking trajectories. The dynamical model of each neuron
in Learner-CPGs is discussed. Then we explain how we have connected these new neurons with each
other and built up a new type of neural network called Learner-CPG neural networks. Training method
of these neural networks is the most important contribution of this paper. The proposed two-stage learn-
ing algorithm consists of learning the basic frequency of the input trajectory to find a suitable initial point
for the second stage. In the next stage a mathematical path to the best unknown parameters of the neural
network is designed. Then these neural networks are trained with some basic trajectories enable them to
generate new walking patterns based on a policy. A policy of walking is parameterized by some policy
parameters controlling the central pattern generator variables. The policy learning can take place in a
middle layer called MLR layer. High level commands are originated from a third layer called HLDU layer.
In this layer the focus is on training curvilinear walking in NAO humanoid robot. This policy should opti-
mize total payoff of a walking period which is defined as a combination of smoothness, precision and
speed.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The problem of robot locomotion is where neuroscience and
robotics converge. This common part is the pattern generators in
the spinal cord of vertebrate animals called ‘‘Central Pattern Gen-
erators’’ (CPGs). CPGs are neural circuits located in the end parts
of the brain and first parts of the spinal cord of a large number
of animals and are responsible for generating rhythmic and peri-
odic patterns of locomotion in different parts of their bodies [1].
Although these pattern generators use very simple sensory inputs
imported from the sensory systems, they can produce high dimen-
sional and complex patterns for walking, swimming, jumping,
turning and other types of locomotion [2]. The idea that human
nervous system has a layered mechanism in generating complex
locomotion patterns with only simple stimulations is a provocative
one which is intended to be modeled in this paper.

Learning in humanoid robots deals with a large number of chal-
lenges. For example, the robot should overcome noisy and nonde-
terministic situations and reduce unwelcome perturbations [4].

The state space is continuous and multidimensional, thus it is
impossible to search systematically in that space. The fact that
there is no explicit mapping between intentions and actions in a
humanoid robot is a big issue that should be solved [5].

In this paper we intend to train to perform a curvilinear walk in
a NAO soccer player robot using a hierarchical layered learning
paradigm. The proposed method uses a basic CPG based walk con-
troller built of Learner-CPG Neural Networks (LCPGNNs). In this
manner, any kind of complex behavior can be trained into a CPG
neural network and it can be used in the movement of different
types of robots.

In the next section related works in the field of humanoid robot
locomotion and learning will be reviewed and the advantages and
disadvantages in each method will be discussed. In this section we
also introduce NAO platform which is used in this research. Sec-
tion 3 is dedicated to the proposed model of layered learning in
this work. It introduces each layer of our learning platform and ex-
plains different correlations between the layers. The CPG layer is
explained in Section 4. The role of the arms and coupling of them
with other joints is explained in this section. Another important
concept is the feedback pathways which are discussed here. The
mathematical discussion about the learning algorithm used for
Learner-CPG neural networks is presented in Section 5. Here the
two-stage learning algorithm which can train each oscillator
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neuron and its synaptic connection in a LCPGNN is explained. Sec-
tion 6 introduces the MLR layer and its learning mechanism. We
use reinforcement learning in this layer to find an optimal policy
for the CPG layer. Policy parameterization and payoff function is
discussed here as well. Section 7 includes the experimental results.
Here some of the implementations and results in WebotsTM sim-
ulator and simulink of Matlab are presented. In Section 8 the high-
est layer HLDU, its functions and capabilities are briefly discussed.
Section 9 includes the conclusion and future works.

2. Related works

There are many approaches to solve bipedal skill learning issues
[6]. As an alternative to the methods using pre-recorded trajecto-
ries [7,8], ZMP-based approaches [11] or methods using heuristic
control laws (e.g. Virtual Model Control (VMC) [12]), the CPG based
methods are introduced, using some biological perspectives. They
encode rhythmic trajectories as limit cycles of nonlinear dynamical
systems. Coupled oscillator-based CPG implementations offer
miscellaneous features such as the stability properties of the
limit-cycle behavior (i.e. the ability to overcome perturbations
and compensate their effects), the smooth online modulation of
trajectories through changes in the parameters of the dynamical
system, and entrainment phenomena when the CPG is coupled
with a mechanical system. Examples of CPGs applied to biped
locomotion are included in [13,14]. Matsubaraa et al. discussed a
CPG-based method for biped walking combined with policy
gradient learning [10].

A drawback of the CPG approach is that most of the time these
CPGs have to be custom-made for a specific application. There are
few techniques to construct a CPG for generating an arbitrary input
trajectory. Righetti et al. represented a model for constructions of a
generic model of CPG [13]. This method is a Programmable Central
Pattern Generator (PCPG) by applying dynamical systems and
some differential equations for developing a training algorithm.
The learner model is based on the works of [15] a Hebian learning
method in dynamical Hopfs oscillators. The programmable central
pattern generator was used to generate walking patterns for a
Hoap2 robot. This Hoap2 can increase its speed without falling to
the ground. Using this type of generic CPGs they trained the PCPGs
with sample trajectories of walking patterns of the Hoap-2 robot
provided by Fujitsu. Each trajectory is a teaching signal to the cor-
responding CPG controlling associated joints.

Hackenberger initiated some proceedings [16] on programma-
ble CPG model included in [13] in order to use a nonlinear feed-
back policy for balancing a humanoid robot during a walking
gait. This system consists of two modules: A polar-based PCPG
which reproduces a walking trajectory, and a reinforcement
learning agent responsible for modifying the walking patterns.
This paradigm can use programmable central pattern generators
and enables them to incorporate gyro feedbacks into the system
definitions generating the walking trajectories. Degallier et al.
[17] defined a modular generator of movements called Unit
Pattern Generators (UPGs) and combined them to build CPGs
for some robots with great degrees of freedoms. He applied his
framework to interactive drumming and infant crawling in iCub
humanoid robot.

3. Layered learning architecture

The idea of layered learning in multi agent systems was intro-
duced in [19] by Stone. He investigated the use of machine learn-
ing within a team of soccer player’s 2D agents. Using hierarchical
task decomposition, layered learning enables us to learn a specific
task at each level of the hierarchy. Here a hierarchical learning

framework for walk learning in soccer player humanoid robots
is designed. Our model composed of 4 different layers. Designs
of these layers are inspired from biological hierarchy of the ner-
vous system in human [22]. These layers are called HLDU, MLR,
CPG, LLJ layers. Fig. 1 illustrates this model. In this section we dis-
cuss the overall hierarchical model, specific function of each layer
and relations between the layers.

� HLDU layer: High Level Decision Unit (HLDU) is a model of
Cerebrum part of the brain cortex. Cerebrum controls learned
behaviors and memory in human being and makes up about
80% of the brain mass [20]. In this region high level com-
mands for different motor behavior, vision, hearing and
speaking are generated. In our model this is the place of deci-
sion making which learns to analyze input images, process
them and send commands/vision feedbacks to the next layer.
The Image captured by the robot cameras which determine
the local position of the robot with respect to the desired path
and this position generates the immediate speed and preci-
sion feedbacks. In the current study, The special commands
generated by this layer determine a curvilinear path on the
ground.
� MLR Layer: Mesencephalic Locomotor Region (MLR) layer is

responsible for making suitable policies for the lower parts of
neuronal system. This region is located in the midbrain and
has descending pathways to the spinal cord via the reticular for-
mations. Here is the center for decisions related to locomotion.
Different decisions from higher parts of the brain are entered
into this region and it produces some types of high-level and
low-level electrical stimulation in order to modify the behavior
of central pattern generators [20]. The level of stimulation can
modulate the speed of locomotion or translation of the gaits
[3]. This region is modeled as a policy learner which gets
parameterized inputs (path commands and vision feedbacks)
from HLDU layer and generates a policy vector for the next
layer. A policy of walking is a stimulation of CPG layer that is
formulated as a policy gradient learning problem on some open
parameters of the CPG layer. In our previous works [21,22] we
did not consider the effects of feedback pathways in this policy
vector. In this paper, however the gyro and foot pressure feed-
backs are added to the CPG layer and consequently the policy
should consider the effects of these state variables in the learn-
ing process. This value can determine the instantaneous
smoothness of walking. Instantaneous smoothness, speed and
precision are combined to compute total payoff of a walking
experiment.
� CPG layer: The third layer is the Central Pattern Generator (CPG)

layer that consists of some Learner Central Pattern Generator
Neural Networks (LCPGNNs). CPG layer is connected to the LLJ
layer and sends motion trajectories generated from a high level
decision command to the PIDs. The fundamental building block
of the LCPGNNs is oscillatory neurons (o-neurons), designed and
introduced in this paper. These o-neurons have the property of
learning the frequency of a periodic input signal and changing it
based on some sensory input. Usually, the frequency of an o-
neurons can be controlled by a specific parameter in the state
representation. In this paper a learning algorithm is introduced
for finding specific parameters of o-neurons and synaptic con-
nection weights in a LCPGNN.
� LLJ layer: Low Level Joint (LLJ) layer is composed of PID control-

lers located in the robot hardware. This layer is directly con-
nected to the robot and controls each Degree Of Freedom
(DOF). Its input is the desired positions of the joints which are
generated from CPG layer and it also receives the previous joint
values as a feedback. It can calculate error and generate appro-
priate voltages to produce required torques and speeds.
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