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a b s t r a c t

We consider the representation of information about the value of an uncertain variable using a monotonic set

measure, fuzzy measure. We introduce a number of notable measures that are useful for the representation of

this kind of information. We look at the formulation of the concept of entropy in this framework. The Choquet

integral is introduced as a tool to help obtain expected value like formulations in the case of measure type

uncertainty. It is shown how this can be used in decision making with alternatives having uncertain payoffs.

A formulation for the variance associated with measure based uncertain information is provided. The issue

of the fusion of multiple pieces of measure-represented information is investigated.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The need to model uncertain information arises in many tasks

in computational intelligence. Further compounding the situation, is

the fact that in many current technological applications uncertain in-

formation can appear, not only in the classic probabilistic format, but

can come in many different modalities. Here we investigate the use of

a monotonic set measure, fuzzy measure [1,2], for the representation

of uncertain information about the value of a variable. The use of a

fuzzy measure to represent uncertain information provides a unified

framework for the representation of many different modes of uncer-

tain information. This is particularly useful in the task of multi-source

information fusion and decision making under uncertainty. Given our

large body of experience in working in the probabilistic environment

it appears only prudent to try to take advantage of this as we move

to the more general measure representation of uncertain informa-

tion. With this in mind our focus here is on formulating some of the

important concepts and methodologies used in the probabilistic en-

vironment in the framework of a measure based representation of

uncertain information.

After first describing the basics of the use of a measure to model

uncertain information we show how the concept of entropy [3,4]

can be expressed in the case of a measure. More significantly we

illustrate how the Choquet integral [5,6] can be used to move an

idea similar to expected value to the measure representation envi-

ronment. We show this has immediate application to the problem of

decision making under measure based-uncertainty. More generally

we show that the Choquet can be used to obtain an expected-like
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value for any function of a measure type uncertain variable. This

immediately allows us to formulate the concept of variance in this

measure environment. In probability theory an important idea is the

probability of an event, where an event A is crisp or fuzzy subset

of the domain of the uncertain variable. Here, since the idea of

measure is broader than that of probability, we use the less specific

terminology of “anticipation” and speak of the anticipation of an

event in an analogous manner to speaking of the probability of an

event. We provide a formulation for the anticipation of an event that

reduces to the probability of an event in the case where the measure

is a probabilistic one. We describe a method for aggregating fuzzy

measures which results in fuzzy measures. This is shown to provide

a basis for an approach to a measure based technology for the fusion

of multi-source uncertain information.

2. Fuzzy measures for uncertainty modeling

A fuzzy measure μ on the space X = {x1, …, xn} is a set mapping

2X → [0, 1] having the properties that μ(∅) = 0, μ(X) = 1 and μ(A)

≥ μ(B) if B ⊆ A [1,7]. Here we shall simply use the term measure for

these objects. We observe that a fuzzy measure essentially associates

with subsets of the space X a value in the unit interval. We note that

a measure having the property that μ(A) ∈ {0, 1} for all A is called a

binary measure.

Assume V is an uncertain variable taking its value in the space X.

We can represent our knowledge about the value of V using a mea-

sure μ. Here for any subset A of X, μ(A) indicates our anticipation of

finding the value of V in A [7]. We see the appropriateness of the use

of this measure since the properties of a measure are very natural for

this type of representation. The property μ(∅) = 0 reflects the fact

that we have zero anticipation of finding the value of V in the null

set. The property μ(X) = 1 reflects the fact that we have complete
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anticipation of finding the value of V in the set X. The last condition

reflects the fact that as the size of a set increases our anticipation

of finding the value of V in it cannot decrease. In passing we note

that our use of the term anticipation is generic for as we shall see for

some measures we use a more specific term then anticipation, such

as probability.

An important related concept is the dual of a measure. If μ is a

measure on X then its dual μ̂ is also a measure on X defined so that

μ̂(A) = 1 − μ(Ā). If μ(A) is interpreted as the anticipation of finding

the value V in A then the dual is representing the anticipation of not

finding the value of V in not A. We note that μ and μ̂ come in unique

pairs since ˆ̂μ = μ. In the special case where μ(Ā) = 1 − μ(A) we see

that μ̂(A) = 1 − (1 − μ(A)) = μ(A). Thus in this situation the antic-

ipation of finding the value of V in A is the same as not finding the

value of V in not A.

Two important measures in the perspective of hard-soft informa-

tion fusion are probability and possibility measures [8]. In addition to

their importance in the representation of hard and soft information

one important feature shared by these measures is that they are de-

composable in the sense that for these measures the measure of any

set A can be expressed in terms of the measures of the individual ele-

ments comprising the set A. This has the effect of greatly reducing the

problem of obtaining the value of the measure for different subsets.

We just need a small number of parameters.

A probability measure on the space X, often called an additive

measure, is defined in terms of a collection of parameters pi for i = 1

to n such that pi ∈ [0, 1] with
∑n

i=1 pi= 1 and μ({xi}) = pi. Further-

more this measure is additive in the sense that μ(A) = ∑
xi∈A pi. For

a probability measure we use the more specific term probability in-

stead of anticipation. For this measure pi is denoted as the probability

that V is xi and μ(A) is referred to as the probability that V lies in A

or more succinctly as the probability of A. We emphasize here that a

probability measure only requires the n parameters pi to completely

define it.

Two important cases of probability measure are those corre-

sponding to complete certainty and complete uncertainty. Complete

certainty is the case where for some xk, pk = 1 and pj = 0 for all j

�= k. This represents the situation where we know that V = xk. It is

easy to see for this type of measure μ(A) = 1 for any A such that xk

∈ A and μ(A) = 0 for any A such that xk �∈ A. Thus complete certainty

is a binary measure. The second special case of probability measure,

complete uncertainty, is one in which pj = 1/n for all xj. Here we see

that μ(A) = Card(A)
n = |A|

n .

All probability measures have the very important property

that μ(A) = 1 − μ(Ā). We see this since μ(A) = ∑
xj∈A pj and

μ(Ā) =∑
xj /∈A pj and since A ∪ Ā = X we have μ(A) + μ(Ā) = 1. From

this it follows that for a probability measure μ̂(A) = μ(A), they are

self-dual; the dual of A is equal to μ(A). This is a very important

property and as we shall subsequently see it is especially useful in

decision-making and question answering.

A possibility measure [9–11] on the space X is also defined in

terms of a collection of n parameters, π i for i = 1 to n such that π i

∈ [0, 1] and Maxi[π i] = 1. For this measure μ(A) = Maxxi∈A [πi]. Here

μ({xi}) = π i and it is called the possibility of xi. For this measure π i

indicates the possibility that V is xi. Here μ(A) indicates the possibil-

ity that V lies in A. It is simply referred to as the possibility of A. It is

easy to show that for the measure μ(A ∪ B) = Max[μ(A), μ(B)] [1].

Two important examples of possibility measures are those mod-

eling complete certainty and complete uncertainty. For complete cer-

tainty we have for some xk, that π k = 1 and π j = 0 for all j �= k. This

is the case where we know that V = xk. It is easy to see for this type

of measure μ(A) = 1 for any A such that xk ∈ A and μ(A) = 0 for

any A such that xk �∈ A. We see that this is the same as the probabil-

ity measure in the case of complete certainty. For the second special

case, complete uncertainty, we have π j = 1 for all j. From this it fol-

lows that for all A �= ∅ we have μ(A) = 1. We see this representation

of complete uncertainty is different then for the case of probability

measures.

We note that while the union of possibilities is compositional, μ(A

∪ B) = Max[μ(A), μ(B)], the intersection is not compositional, μ(A ∩
B) ≤ Min[μ(A), μ(B)].

We note that the dual of a possibility measure, denoted μ̂, is such

that μ̂(A) = 1 − μ(Ā), and is called a necessity measure [12]. It is easy

to show that if μ is a possibility measure then μ̂(A) ≤ μ(A) for all A

and that μ̂(A ∩ B) = Min[μ̂(A), μ̂(B)]. Furthermore since μ̂(A) + μ (Ā)

= 1 and for possibility measures we have μ̂(A) ≤ μ(A) we see μ(A) +
μ(Ā) ≥ 1 for possibility measures.

If μ is a possibility measure with μ({xj}) = π j and the subset Fj =
X − {xj} then

μ̂(F j) = 1 − μ(F̄ j) = 1 − m({xj}) = 1−π j.

Let E = X – F then E = ⋂
x j /∈E Fj. Then μ̂(E) Min[(1−π j)]

j, x j /∈E

Another important class of measures for the representation of in-

formation about an uncertain variable is the cardinality-based mea-

sure. Here the measure of a set just depends on the number of ele-

ments in the set, independent of which elements are in the set. Thus

our anticipation of finding the value of V in the set A, μ(A), just de-

pends on the number of elements in A. More formally, we define a

cardinality-based measure using a set of parameters, αj ∈ [0, 1] for

j = 0 to n, such that α0 = 0, αn = 1 and αj + 1 ≥ αj. For these mea-

sures μ(A) = α|A| where |A| is the cardinality of A. We emphasize for

this type of measure for all xi, we have μ({xi}) = α1. Thus all elements

in X have the same anticipation being the value of V. We emphasize

here that these measures also only require a small set of parameters

for their complete modeling, the αj.

Two important measures in this class are μ∗ and μ∗. For μ∗ we

define αj = 1 for j �= 0 and for μ∗ we define αj = 0 for j �= 1. Thus

μ∗(A) = 1 for A �= ∅ and μ∗(∅) = 0 and μ∗(A) = 0 for A �= X and

μ∗(X) = 1. We note that both of these measures are representing sit-

uations in which we have no information about the value of V other

then it lies in X, however μ∗ is representing it in a very optimistic

way while μ∗ is a more pessimistic representation. Thus in the case

of cardinality-based measures the parameters are capturing some as-

pects of an optimism-pessimism scale.

Another special case of the cardinality-based measure is a ‘tipping’

measure. Here αj = 0 for j < k and αj = 1 for j ≥ k. Thus here μ(A) =
1 if A has at least k elements and otherwise μ(A) = 0. We note that

while these last three examples are also binary measures, generally

cardinality-based measures are not necessarily binary measures.

3. Entropy of a measure

A fundamental idea in probability theory is the concept of entropy

[13]. The entropy of a probability distribution provides a measure of

the overall uncertainty associated with a probability distribution. If

P is a probability distribution on the space X = {x1, …, xn} where pi

is the probability that V = xi the Shannon entropy [4] of P is H(P) =
–

∑n
i=1 piln(pi). It is well known that H(P) takes its maximal value,

ln(n), for the case where pi = 1/n for all xi. It takes its minimal value

H(P) = 0 when P is such that there exists one xk such that pk = 1

and all other pj = 0. In this case we know exactly the value of V. We

see the larger the entropy the more the uncertainty, thus entropy is a

measure of uncertainty.

In [14] Yager extended the idea of entropy to situations where our

knowledge about the value of the variable V is expressed using a mea-

sure μ on the domain X of the variable. Marichal and Roubens [15] as

well as Dukhovny [16] have also suggested extensions of the Shannon

entropy in the framework of measures. We note Honda [17] provides

a comprehensive discussion of the idea of entropy for measures.

Yager’s definition of entropy of a measure is based on the use of

the Shapley index [18]. If μ is a measure on the space X then for any
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