
Knowledge-Based Systems 92 (2016) 9–22

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Windowing improvements towards more comprehensible models

Pedro Santoro Perez a, Sérgio Ricardo Nozawa b,1, Alessandra Alaniz Macedo a,
José Augusto Baranauskas a,∗

a Department of Computer Science and Mathematics (FFCLRP), University of Sao Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, SP 14040-901, Brazil
b Dow AgroSciences (Seeds, Traits & Oils), Av. Antonio Diederichsen 400, Ribeirão Preto, SP 14020-250, Brazil

a r t i c l e i n f o

Article history:

Received 24 July 2015

Revised 11 September 2015

Accepted 4 October 2015

Available online 22 October 2015

Keywords:

Windowing

Decision tree metrics

High dimensional data

a b s t r a c t

The induction of decision tree searches for relevant characteristics in the data which would allow it to pre-

cisely model a certain concept, but it also worries about the comprehensibility of the generated model, help-

ing human specialists to discover new knowledge, something very important in the medical and biological

areas. On the other hand, such inducers present some instability. The main problem handled here refers to

the behavior of those inducers when it comes to high-dimensional data, more specifically to gene expres-

sion data: irrelevant attributes may harm the learning process and many models with similar performance

may be generated. In order to treat those problems, we have explored and revised windowing: pruning of

the trees generated during intermediary steps of the algorithm; the use of the estimated error instead of the

training error; the use of the error weighted according to the size of the current window; and the use of

the classification confidence as the window update criterion. The results show that the proposed algorithm

outperform the classical one, especially considering measures of complexity and comprehensibility of the

induced models.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

One of the greatest challenges for machine learning (ML) is to

build precise models out of high-dimensional data, like gene expres-

sion data. Furthermore, in biology and medicine, the comprehensibil-

ity and interestingness of the model is also important for the special-

ists to trust it and have insights about the phenomena being studied,

which might lead to creating new knowledge [1,2]. In this paper, we

have studied the performance of decision trees (DTs) built from high

dimensional data like gene expression, focusing on not only measures

like accuracy, but also on those related to the comprehensibility of the

classifiers.

On the other hand, given the fact that ML algorithms, including

DTs, have been designed for a broad spectrum of the human knowl-

edge, they are based on flexible and powerful representations. This

flexibility may, in some cases, present the disadvantage of making in-

ducers more susceptible to the training data. DTs, for example, are

known to produce very different models with small changes in the

data, which may have the opposite effect: the specialists get confused

and stop trusting the models [3,4]. This paper has also evaluated how

to improve the stability of DTs.

∗ Corresponding author. Tel.: +55 16 33154439; fax: +55 16 33150407.

E-mail addresses: pedrosperez@usp.br (P.S. Perez), srnozawa@gmail.com

(S.R. Nozawa), ale.alaniz@usp.br (A.A. Macedo), augusto@usp.br (J.A. Baranauskas).
1 Phone: +55 16 36025650; fax: +55 16 36025696

Specifically, in gene expression data, the number of genes (at-

tributes) is typically much greater than the number of tissue sam-

ples (instances), and only a small subset of the genes is relevant to

the task at hand [5,6]. The great advantage of DTs over other learning

paradigms, such as function-based and statistical paradigms, is that

they possess an embedded process of attribute selection, allowing

them to use only those attributes which were considered to be rele-

vant and informative [7]. As a result, the final DT models are smaller,

syntactically simpler and more comprehensible. Considering stability

again, in general, DTs built from gene expression data tend to include

very few attributes in the model; however, given the huge number

of attributes, many trees with similar accuracy can be built, each of

which with a different subset of attributes [8].

Gene expression profiles are obtained via Molecular Biology tech-

niques like Microarray [9] (based on intensity measures of DNA hy-

bridization) and SAGE [10] (based on tag counting). This kind of data

helps in the discovery of diagnostic and prognostic methods, diseases

treatment, drug development [11], etc. Many research works have

concentrated efforts on applying ML algorithms on gene expression

analysis [1,2,12–19].

In order to deal with the problems described above, we have

used windowing [20], a technique whose idea is to find a subsam-

ple of a dataset that provides enough information for an inducer to

train a classifier. It has results similar to those achieved by training a

model from the entire dataset, reducing the complexity of the learn-

ing problem [21]. This way, windowing can be seen as a subsampling

http://dx.doi.org/10.1016/j.knosys.2015.10.011

0950-7051/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.knosys.2015.10.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2015.10.011&domain=pdf
mailto:pedrosperez@usp.br
mailto:srnozawa@gmail.com
mailto:ale.alaniz@usp.br
mailto:augusto@usp.br
http://dx.doi.org/10.1016/j.knosys.2015.10.011

10 P.S. Perez et al. / Knowledge-Based Systems 92 (2016) 9–22

technique [22], but, unlike other subsampling techniques (e.g., boot-

strapping), windowing tend to provide more class balanced and in-

formative samples. The technique was first proposed by [23] in the

context of decision trees as a way to deal with memory restrictions

imposed by computers in the late 1970’s to some relatively large

datasets. The work of [20] argues windowing is interesting for two

reasons: i) in some cases, especially those free of noise, it may make

the time taken to build the model shorter (e.g., when the dataset is

very large and a model that perfectly classifies all training instances is

achieved in the first iterations). For most cases, however, windowing

makes that time longer; ii) windowing may produce more accurate

classifiers, since it explores the solution space a little further. Mem-

ory is still an issue, given the existence of huge databases on medical

and biological domains.

The study performed by [24] states that windowing contributes to

better threshold choices for continuous attributes in decision tree in-

duction. In [25], windowing is seen as a way to make unstable learn-

ing algorithms more stable. Some other studies have explored win-

dowing in the context of rule induction [26], as they have noted the

technique produces better results with that kind of inducer than with

decision trees, since rules are learned independently of each other

and are less susceptible to changes in the class distribution. In spite

of the experience Quinlan had with windowing, those studies also

state that the technique is not good to be used with decision trees,

especially in noisy domains [27]. Possibly because of that, very lit-

tle has been researched towards improving the combination between

windowing and decision trees, although there still are some work on

it [28]. Our research group believes there still are some aspects of

windowing that could be explored further and has proposed some

changes in the original algorithm, which will be discussed in the next

sections. These changes are focused on improving the performance

of decision trees built from gene expression data (which are typically

noisy).

Our implementation of windowing can be applied to any learning

algorithm that works with classification. Our group has been focus-

ing on symbolic classifiers, i.e., those which can be written as a set of

rules. In this context, one advantage of windowing over other meta-

inducers is that its use with symbolic classifiers still provides sym-

bolic classifiers. Instead of just concerning about accuracy, we have

used comprehensibility-related measures to assess the models. Such

measures are well established when it comes to rule induction, but

not when it comes to DTs. We have proposed some of those measures

but specifically applied to DTs.

The remaining sections are organized as follows: Section 2 gives

details about the original version of windowing; Section 3 describes

the alterations proposed in windowing and how the experiments

were conducted; Section 4 presents the measures used to assess

the results; Section 5 presents the experimental setup; results and

discussion can be found in Section 6; conclusions are presented in

Section 7.

2. Original windowing

The version of windowing used here is that of C4.5 [20], an algo-

rithm of top-down induction of decision trees. Starting from the root

of the tree, the algorithm performs a greedy search for attributes to be

used in tests in the internal nodes. Each internal node performs a test

on only one attribute and has two or more branches, each of which

representing a test outcome. The leaf nodes contain class labels. To

label a new example: from the root node, tests are performed and,

according to their outcomes, the example goes down the tree until it

reaches a leaf node, receiving its label. The decision tree inducer has

a Java implementation in Weka [29] called J48.

This section describes windowing as it is implemented in C4.5

Release 8 [20]. Algorithm 1 shows the pseudo-code of windowing,

where N represents the number of instances in the training set and

Algorithm 1 Original windowing.

Require: Instances: a set of N labeled instances {(�xi, yi), i =
1, 2, . . . , N}
W : the initial window size, default value W ← max{0.2N, 2

√
N}

I0: the tentative increment size, default value I0 ← max{0.2W, 1}
Ensure: bestClassifier: the best classifier found

1: N ← |Instances|
2: window ← sample(W , Instances)

3: bestClassifierErrors ← N + 1

4: repeat

5: h ← induceClassifier(window)

6: windowErrors ← ∑
�xi∈window ‖ h(�xi) �= yi ‖

7: testErrors ← ∑
�xi �∈window ‖ h(�xi) �= yi ‖

8: totalErrors ← windowErrors + testErrors

9: if (totalErrors < bestClassifierErrors) then

10: bestClassifier ← h

11: bestClassifierErrors ← totalErrors

12: end if

13: I ← max{min{testErrors, I0}, testErrors/2}
14: I ← min{I, N − |Instances \ window|}
15: increment ← get I first misclassified test instances

16: window ← window ∪ increment

17: until testErrors = 0

18: bestClassifier ← prune(bestClassifier)

19: return bestClassifier

�xi and yi (i = 1, . . . , N) represent a vector containing the attribute val-

ues and the class label for instance i, respectively. The ‖E‖ operator

returns 1, if E is true, or 0, otherwise.

Before the learning process begins, a subset of the training set

is chosen, forming the initial window (Line 2), from which a model

is induced (Line 5); the model is then used to predict the class of

all training examples inside (windowErrors) and outside the window

(testErrors), which might produce some misclassifications (Lines 6–

7); if the errors found are less than the errors of the best classifier

so far (initially, N + 1), the current classifier is kept as the best one

(Lines 9–12); if there were errors outside the window, the window is

updated and used to train another classifier; the resulting model is

then tested again, and the process is repeated until no misclassifica-

tions occur outside the window.

The initial window (Line 2) is not actually sampled randomly. First

the training set is shuffled; then the algorithm tries to build a win-

dow as uniform as possible, i.e., the class distribution gets to be as

balanced as possible. Considering c as the actual number of all class

values of a dataset and E = W/c as the expected number of instances

for each class value in the initial window W, for any given class value,

if the number of instances labeled with it is at least equal to E, then

it will be represented by E instances in the initial window; other-

wise, all instances representing that class value will be added to the

window. This often leads to better results, especially in cases of un-

balanced classes [20]; it also contributes to better threshold choices

for continuous attributes [24]. In spite of being as uniform as possi-

ble, the class distribution and the examples chosen to be in the ini-

tial window are subject to a random sampling, which means that one

may have different initial windows, leading to different final classi-

fiers. As it can be seen in Algorithm 1, at least half of the misclas-

sified examples outside the window is added to it at each iteration

(Lines 13–16), provided that there are enough examples. This is done

to make the model converge faster. Lines 15–16 take I misclassified

examples from outside the window and adds them to it.

The process can be repeated more than once. Each repetition is

called a trial and starts with a different initial window, which often

generates a different final classifier. By default, C4.5 uses 10 trials.

The best tree classifier from all trials is returned as the final output.

Download English Version:

https://daneshyari.com/en/article/402757

Download Persian Version:

https://daneshyari.com/article/402757

Daneshyari.com

https://daneshyari.com/en/article/402757
https://daneshyari.com/article/402757
https://daneshyari.com

