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a b s t r a c t

Feature descriptors have become an increasingly important tool in shape analysis. Features can be extracted

and subsequently used to design robust signatures for shape retrieval, correspondence, classification and

clustering. In this paper, we present a graph-theoretic framework for 3D shape clustering using the bihar-

monic distance map and graph regularized sparse coding. While this work focuses primarily on clustering,

our approach is fairly general and can be used to tackle other 3D shape analysis problems. In order to seam-

lessly capture the similarity between feature descriptors, we perform shape clustering on mid-level features

that are generated via graph regularized sparse coding. Extensive experiments are carried out on three stan-

dard 3D shape benchmarks to demonstrate the much better performance of the proposed clustering approach

in comparison with recent state-of-the-art methods.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The recent surge of interest in the spectral analysis of the Laplace–

Beltrami operator (LBO) has resulted in a plethora of spectral shape

signatures that have been successfully applied to a wide range of

tasks, including object recognition and deformable shape analysis

[1–6], medical imaging [7], multimedia protection [8], and shape

classification [9]. Spectral shape signatures are feature vectors rep-

resenting local and/or global characteristics of a shape and may be

broadly classified into two main categories: local and global descrip-

tors. Local descriptors (also called point signatures) are defined on

each point of the shape and often represent the local structure of the

shape around that point, while global descriptors are usually defined

on the entire shape. Moreover, most point signatures can easily be

aggregated to form global descriptors by integrating over the entire

surface of the shape. Rustamov [2] proposed a local feature descrip-

tor referred to as the global point signature (GPS), which is a vector

whose components are scaled eigenfunctions of the LBO evaluated

at each surface point. The GPS signature is invariant under isometric

deformations of the shape, but it suffers from the problem of eigen-

functions’ switching whenever the associated eigenvalues are close

to each other. This problem was lately well handled by the heat ker-

nel signature (HKS) [10], which is a temporal descriptor defined as an

exponentially-weighted combination of the LBO eigenfunctions. HKS

is a local shape descriptor that has a number of desirable properties,

including robustness to small perturbations of the shape, efficiency
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and invariance to isometric transformations. The idea of HKS was also

independently proposed by Gȩbal et al. [11] for 3D shape skeletoniza-

tion and segmentation under the name of auto diffusion function. Us-

ing the Fourier transform’s magnitude, Bronstein and Kokkinos [12]

introduced the scale invariant heat kernel signature (SIHKS), which is

constructed based on a logarithmically sampled scale-space. A gen-

eralized shape signature based on spectral graph wavelets was intro-

duced in [4]. The SGW signature is a multiresolution local descriptor

that is not only isometric invariant, but also compact, easy to compute

and combines the advantages of both band-pass and low-pass filters.

A comprehensive list of global spectral descriptors can be found in

[13,14].

One of the simplest spectral shape signatures is Shape-DNA [1],

which is an isometry-invariant global descriptor defined as a trun-

cated sequence of the LBO eigenvalues arranged in increasing order

of magnitude. Gao et al. developed a variant of Shape-DNA, referred

to as compact Shape-DNA (cShape-DNA) [9]. The cShape-DNA is an

isometry-invariant signature that is obtained by applying the discrete

Fourier transform to the area-normalized eigenvalues of the LBO.

Chaudhari et al. presented a slightly modified version of the GPS sig-

nature [7] by setting the LBO eigenfunctions to unity. This signature,

called GPS embedding, is defined as a truncated sequence of inverse

square roots of the area-normalized eigenvalues of the LBO. Inspired

by the Shape Google framework for 3D shape retrieval [3], Bu et al. in-

troduced a deep learning based approach (3D-DL) for 3D shape clas-

sification and retrieval. The 3D-DL framework uses a 2D global de-

scriptor, which is represented by a full matrix defined in terms of the

geodesic distance and eigenfunctions of the LBO. Unlike sparse repre-

sentations, the matrix representation in 3D-DL may, however, require

a large amount of memory for data storage compared to 1D global
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descriptors. Moreover, the 3D-DL approach suffers from the long run-

ning time of deep belief networks. More recently, a global descriptor

called reduced biharmonic distance matrix (R-BiHDM) was proposed

in [6] for nonrigid shape retrieval. The R-BiHDM signature has a num-

ber of attractive properties that makes it suitable for addressing other

shape analysis problems. It is isometry invariant, computationally ef-

ficient, robust to various shape deformations, and possesses good dis-

criminative capabilities.

While spectral signatures have received much attention in non-

rigid 3D shape analysis [1–6], view-based methods, on the other

hand, have also been successfully applied to 3D shape recognition

and retrieval [15–18]. Gao et al. proposed a view-based 3D shape

recognition and retrieval approach by exploring higher-order rela-

tionships among shapes via hypergraphs [15], where a vertex rep-

resents a shape and an edge delineates a cluster of views. Another

view-based method for 3D shape retrieval was presented in [16],

which requires no camera constraint for view capturing of shapes,

i.e. a shape may be described by a set of views from any arbitrary

direction. Given a query shape, all its query views are first clus-

tered in an effort to generate view clusters, which are then used to

construct the query model. More recently, Zhao et al. introduced a

feature fusion framework for view-based 3D shape retrieval using

multi-modal graph learning [17]. The idea is to extract multiple vi-

sual features with the aim of describing each view of a 3D shape,

followed by constructing multiple graphs that are fused with differ-

ent weights. The optimal weights for each graph are then learned

via a graph Laplacian regularization approach. Zhao et al. also in-

troduced a generalized 3D depth data matching strategy for action

retrieval [18]. This approach employs a 3D shape context descriptor

for extracting features of each static depth frame, and then uses dy-

namic time warping for computing the matching similarity between

two 3D dynamic depth sequences. Other applications of shape fea-

tures include times series visualization [19] and content-based image

retrieval [20].

Sparse coding, on the hand, is a family of unsupervised algorithms

[21] that are essentially employed for learning an overcomplete set

of bases, where an image or shape can be represented by a high-

dimensional but sparse feature vector. The goal of sparse coding is

to represent a feature vector by a linear combination of a sparse set

of basis vectors. Sparse coding has been successfully employed in a

slew of computer vision and geometry processing applications such

as face recognition [22], image denoising [23], image classification

[24–27] and 3D shape retrieval [28], to name just a few. In recent

years, various coding schemes have been proposed in the literature,

and have proven to be effective in a wide range of computer vision

tasks. Wang et al. [25] introduced locality-constrained linear cod-

ing, which enforces locality instead of sparsity. In [26,27], the graph

regularized sparse coding, also known as the Laplacian sparse coding,

was proposed. This coding scheme takes into account the geometric

structure of the data space by using a graph Laplacian regularizer in

an effort to preserve the locality of the features to be encoded. Unlike

sparse coding in which each feature is encoded independently, the

graph regularized sparse coding encodes similar features with sim-

ilar sparse codes, thereby preserving the locality information of the

features to be encoded.

Motivated by the good performance of the reduced biharmonic

distance matrix in shape retrieval, we propose a robust graph-

theoretic clustering approach, called graph biharmonic distance map

(GraphBDM), which uses the R-BiHDM signature in conjunction with

graph regularized sparse coding. Unlike classification in which ob-

jects are assigned to predefined classes, clustering is different in the

sense that the number (and labels) of clusters or the cluster struc-

ture are not known in advance. The core goal of 3D shape clustering

is to organize a dataset of 3D shapes into homogeneous subgroups or

clusters in a unsupervised manner using a pre-defined similarity of

dissimilarity measure. These clusters are formed in such a way that

objects in the same cluster are very similar, while objects in different

clusters are very dissimilar.

In addition to exploiting the dependence among the features

of shape signatures via the graph Laplacian matrix, the proposed

GraphBDM framework performs clustering on sparse mid-level fea-

ture vectors that are learned via graph regularized sparse coding (i.e.

in the sparse codes domain), thereby seamlessly capturing the simi-

larity between these features. We not only show that our formulation

allows us to incorporate feature dependencies, but we also demon-

strate that the proposed framework yields better clustering accuracy

results compared to state-of-the-art methods, while remaining com-

putationally attractive.

The rest of this paper is organized as follows. In the next section,

we briefly overview the Laplace–Beltrami operator and the basics of

sparse coding. In Section 3, we introduce a graph-theoretic frame-

work for 3D shape clustering, and we discuss in detail its main algo-

rithmic steps. Experimental results are presented in Section 4. Finally,

we conclude in Section 5 and point out some future work directions.

2. Background

A 3D shape is usually modeled as a triangle mesh M whose ver-

tices are sampled from a Riemannian manifold. A triangle mesh M

may be defined as a graph G = (V, E) or G = (V, T ), where V =
{v1, . . . , vm} is the set of vertices, E = {ei j} is the set of edges, and

T = {t1, . . . , tg} is the set of triangles, as depicted in the enlarged view

of Fig. 1 (left). Each edge ei j = [vi, v j] connects a pair of vertices {vi,

Fig. 1. Triangular mesh representation (left); cotangent scheme angles (right).
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