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a b s t r a c t

Efficiently finding similar segments or motifs in time series data is a fundamental task that, due to the ubiq-

uity of these data, is present in a wide range of domains and situations. Because of this, countless solutions

have been devised but, to date, none of them seems to be fully satisfactory and flexible. In this article, we

propose an innovative standpoint and present a solution coming from it: an anytime multimodal optimiza-

tion algorithm for time series motif discovery based on particle swarms. By considering data from a variety

of domains, we show that this solution is extremely competitive when compared to the state-of-the-art, ob-

taining comparable motifs in considerably less time using minimal memory. In addition, we show that it is

robust to different implementation choices and see that it offers an unprecedented degree of flexibility with

regard to the task. All these qualities make the presented solution stand out as one of the most prominent

candidates for motif discovery in long time series streams. Besides, we believe the proposed standpoint can

be exploited in further time series analysis and mining tasks, widening the scope of research and potentially

yielding novel effective solutions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Time series are sequences of real numbers measured at succes-

sive, usually regular time intervals. Data in the form of time series

pervade science, business, and society. Examples range from eco-

nomics to medicine, from biology to physics, and from social to

computer sciences. Repetitions or recurrences of similar phenomena

are a fundamental characteristic of non-random natural and artifi-

cial systems and, as a measurement of the activity of such systems,

time series often include pairs of segments of strikingly high similar-

ity. These segment pairs are commonly called motifs [34], and their

existence is unlikely to be due to chance alone. In fact, they usu-

ally carry important information about the underlying system [41].

Thus, motif discovery is fundamental for understanding, characteriz-

ing, modeling, and predicting the system behind the time series. Be-

sides, motif discovery is a core part of several higher-level algorithms

dealing with time series, in particular classification, clustering, sum-

marization, compression, and rule-discovery algorithms [see, e.g.,

40, 41].

Identifying similar segment pairs or motifs typically implies ex-

amining all pairwise comparisons between all possible segments in
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a time series. This, specially when dealing with long time series

streams, results in prohibitive time and space complexities. It is for

this reason that the majority of motif discovery algorithms resort to

some kind of data discretization or approximation that allows them

to hash and retrieve segments efficiently. Following the works by Lin

et al. [34] and Chiu et al. [13], many of such approaches employ the

SAX representation [35] and/or a sparse collision matrix [9]. These

allow them to achieve a theoretically low computational complex-

ity, but sometimes at the expense of very high constant factors. In

addition, approximate algorithms usually suffer from a number of

data-dependent parameters that, in most situations, are not intuitive

to set (e.g., time/amplitude resolutions, dissimilarity radius, segment

length, minimum segment frequency, etc.).

A few recent approaches overcome some of these limitations.

For instance, Castro and Azevedo [11] propose an amplitude multi-

resolution approach to detect frequent segments, Li and Lin [33] use

a grammar inference algorithm for exploring motifs with lengths

above a certain threshold, Wilson et al. [55] use concepts from im-

mune memory to deal with different lengths, and Floratou et al.

[18] combine suffix trees with segment models to find motifs of any

length. Nevertheless, in general, these approaches still suffer from

other data-dependent parameters whose correct tuning can require

considerable time. In addition, approximate algorithms are restricted

to a specific dissimilarity measure between segments (the one im-

plicit in their discretization step) and do not allow easy access to pre-

liminary results, which is commonly known as anytime algorithms
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[58]. Finally, to the best of our knowledge, only the authors in

[51,52,56] consider the identification of motif pairs containing seg-

ments of different lengths. This can be considered a relevant fea-

ture, as it produces better results in a number of different domains

[56].

In contrast to approximate approaches, algorithms that do not dis-

cretize the data have been comparatively much less popular, with low

efficiency generally. Exceptions to this statement achieved efficiency

by sampling the data stream [12] or by identifying extreme points

that constrained the search [38]. In fact, until the work of Mueen and

Keogh [44], the exact identification of time series motifs was thought

to be intractable for even time series of moderate length. In said work,

a clever segment ordering was combined with a lower bound based

on the triangular inequality to yield the true, exact, most similar mo-

tif. According to the authors, the proposed algorithm was more effi-

cient than existing approaches, including all exact and many approxi-

mate ones [44]. After Mueen et al.’s work, a number of improvements

have been proposed, the majority focusing on eliminating the need to

set a fixed segment length [39,45,57].

Mueen himself has recently published a variable-length motif dis-

covery algorithm which clearly outperforms the iterative search for

the optimal length using the algorithm in [44] and, from the reported

numbers, also outperforms further approaches as in [39,45,57]. This

algorithm, called MOEN [40], is essentially parameter-free, and is be-

lieved to be one of the most efficient motif discovery algorithms avail-

able nowadays. However, its execution time may still be unaffordable

in a number of situations. Furthermore, MOEN is specifically designed

to work with Euclidean distances after z-normalization. In general,

exact motif discovery algorithms have important restrictions with re-

gard to the dissimilarity measure, and many of them still suffer from

being non-intuitive and tedious to tune parameters. Moreover, few of

them allow for anytime versions and, to the best of our knowledge,

not one of them is able to identify motif pairs containing segments

of different lengths. With the approach we propose here we try to

overcome all these shortcomings at the same time.

In this article, we propose a new standpoint to time series motif

discovery by treating the problem as an anytime multimodal opti-

mization task. To the best of our knowledge, this standpoint is com-

pletely unseen in the literature. We first motivate such a standpoint

and discuss its multiple advantages (Section 2). Next, we present

SWARMMOTIF (Section 3), an anytime algorithm for time series mo-

tif discovery based on particle swarm optimization (PSO). We sub-

sequently evaluate the performance of the proposed approach using

9 different real-world time series from distinct domains (Section 4).

These include economics, car traffic, entomology, medical data, au-

dio, climate, and power consumption. Our results show that SWARM-

MOTIF is extremely competitive when compared to the state-of-the-

art, obtaining motif pairs of comparable similarity in considerably

less time and with minimum storage requirements (Section 5). More-

over, we show that SWARMMOTIF is significantly robust against dif-

ferent implementation choices. These two aspects, together with its

flexibility and extension capabilities, make SWARMMOTIF a unique

novel solution for time series motif discovery. The latter implies that

SWARMMOTIF can, for instance, deal with motifs of different lengths,

apply uniform scaling, use any suitable dissimilarity measure, or

incorporate notions of motif frequency. To conclude, we briefly com-

ment on the application of multimodal optimization techniques to

time series analysis and mining, which we believe has great potential

(Section 6). The data and code used in our experiments are available

online1.

1 http://www.iiia.csic.es/∼jserra/swarmmotif
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Fig. 1. Example of a time series motif pair found in the Wildlife time series of [42]

using SWARMMOTIF and normalized dynamic time warping as the dissimilarity mea-

sure: a = 248, wa = 244, b = 720, and wb = 235.

2. Time series motif discovery as an anytime multimodal

optimization task

2.1. Definitions and task complexity

From the work by Mueen et al. [40,44], we can derive a for-

mal, generic similarity-based definition [41] of time series motifs.

Given a time series z of length n, z = [z1, . . . zn], a normalized seg-

ment dissimilarity measure D, and a temporal window of inter-

est between wmin and wmax samples, the top-k time series mo-

tifs M = {m1, . . . mk} correspond to the k most similar segment

pairs zwa
a = [za, . . . za+wa−1] and z

wb

b
= [zb, . . . zb+wb−1], for wa, wb

∈ [wmin, wmax], a ∈ [1, n − wa + 1], and b ∈ [1, n − wb + 1]. Thus,

we see that the ith motif can be fully described by the tuple

mi = {a, wa, b, wb}. To avoid so-called trivial matches [34], we can

force that motifs are non-overlapping2, that is, a + wa < b or b +
wb < a. The motifs in M are ordered from lowest to highest dis-

similarity such that D(m1) ≤ D(m2) ≤ · · · ≤ D(mk) where D(mi) =
D({a, wa, b, wb}) = D(zwa

a , z
wb

b
). An example of a time series motif

pair from a real data set is shown in Fig. 1.

It is important to stress that D needs to normalize with respect

to the lengths of the considered segments. Otherwise, we would not

be able to compare motifs of different lengths. There are many ways

to normalize with respect to the length of the considered segments.

Ratanamahatana and Keogh [49] list a number of intuitive normaliza-

tion mechanisms for dynamic time warping that can easily be applied

to other measures. For instance, in the case of a dissimilarity measure

based on the Lp norm, we can directly divide by the segment length3,

using brute-force upsampling to the largest length when wa �= wb.

From the definitions above, we can see that a brute-force search

in the motif space for the most similar motifs is of O(n2w�
2), where

w� = wmax − wmin + 1 (for the final time complexity one needs to

further multiply by the cost of calculating D). Hence, for instance, in

a perfectly feasible case where n = 107 and w� = 103, we have 1020

possibilities. Magnitudes like this challenge the memory and speed

of any optimization algorithm, specially if we have no clue to guide

the search [23]. However, it is one of our main objectives to show

here that time series generally provide some continuity to this search

space, and that this continuity can be exploited by optimization algo-

rithms.

2.2. Continuity

A fundamental property of time series is autocorrelation, imply-

ing that consecutive samples in a time series have some degree of

2 Notice that, following [40], this definition can be trivially extended to different

degrees of overlap.
3 The only exception is with L∞ , which could be considered as already being nor-

malized.
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