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a b s t r a c t

Advancement and application of rule-based systems have always been a key research area in computer-
aided support for human decision making due to the fact that rule base is one of the most common frame-
works for expressing various types of human knowledge in an intelligent system. In this paper, a novel
rule-based representation scheme with a belief structure is proposed firstly along with its inference
methodology. Such a rule base is designed with belief degrees embedded in the consequent terms as well
as in the all antecedent terms of each rule, which is shown to be capable of capturing vagueness, incom-
pleteness, uncertainty, and nonlinear causal relationships in an integrated way. The overall representa-
tion and inference framework offers a further improvement and great extension of the recently
developed belief Rule base Inference Methodology (refer to as RIMER), although they still share a com-
mon scheme at the final step of inference, i.e., the evidential reasoning (ER) approach is applied to the
rule combination. It is worth noting that this new extended belief rule base representation is a great
extension of traditional rule base as well as fuzzy rule base by encompassing the uncertainty description
in the rule antecedent and consequent. Subsequently, a simple but efficient and powerful method for
automatically generating such extended belief rule base from numerical data is proposed involving nei-
ther time-consuming iterative learning procedure nor complicated rule generation mechanisms but
keeping the relatively good performance, which thanks to the new features of the extended rule base
with belief structures. Then some case studies in oil pipeline leak detection and software defect detection
are provided to illustrate the proposed new rule base representation, generation, and inference procedure
as well as demonstrate its high performance and efficiency by comparing with some existing approaches.

Crown Copyright � 2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

Among many varieties for knowledge representation, it is
widely recognized that the rule based one is one of the most com-
mon frameworks for expressing various types of knowledge in an
intelligent system [22,1]. Taking advantage of the beauty of repre-
senting and manipulating human knowledge at first, in the design
and implementation of advanced rule-based systems for support-
ing human decision making, it is desirable to endower the rule-
based system with certain representation scheme and processing
capabilities to handle simultaneously vagueness, incompleteness
and uncertainty in conjunction with the flexibility in incorporating
different types of input data formats, such as numerical, interval,
uncertain value, or even subjective judgments.

During the last quarter of a century many different types of rule-
based systems emerged, certainly including the fuzzy rule-based
system [33,25], which, as one of the dominant and main frame-
works in rule-based systems, has been widely accepted, investi-
gated and applied in many application areas. Moreover, in
recognition of the need to handle hybrid information with uncer-
tainty in human decision making, a new methodology has been pro-
posed recently for modeling a hybrid rule base using a belief
structure and for inference in the belief rule-based system using
the evidential reasoning (ER) approach [29]. The methodology is
referred to as a belief Rule base Inference Methodology using the
Evidential Reasoning approach – RIMER [30], where a rule base is
designed with belief degrees embedded in the consequent term of
a rule, called a belief rule base (BRB), is used to capture nonlinear cau-
sal relationships as well as uncertainty. The inference of the belief
rule based system is implemented using the ER approach, this has
been a distinct feature compared with the existing rule based infer-
ence methodologies. RIMER approach has been further investigated
and its results and relevant extensions have proved to be highly
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positive in solving decision problems cross different application
areas, such as, among others, safety and risk analysis, oil pipe leak
detection and some other application in health care and engineering
systems [31,32,24,2,17,16,15,14,13,12,19,18,6,21,10,11,34–37].

Among other issues, how to generate the rule base is a funda-
mental issue when designing and implementing a rule base
system. Hence, various methods were proposed for automatically
generating the rule base from sample data set. Most of these
methods have involved iterative training algorithm or complicated
generation scheme, e.g., gradient descent learning methods,
genetic-algorithm-based methods, least-squares methods, a fuzzy
c-means method, and a fuzzy-neuro method for learning fuzzy rule
base, however they are either time consuming or using complicate
rule generation strategies with the need of additional learning
tool. For the RIMER approach, an optimal modeling has been
proposed [31,17], with some further improved learning algorithms
[34–36].

In this paper, to facilitate the more general and advanced appli-
cation cases to handle simultaneously imprecision, incompleteness
and uncertainty in conjunction with the flexibility in incorporating
different types of input data format, as well as more flexible and
simpler rule base generation scheme, the belief rule base in RIMER
is extended with belief degrees embedded also in the entire ante-
cedent terms of each rule. Most importantly, a simple but efficient
and powerful method for automatically generating such extended
belief rule base from numerical data is proposed, which is mainly
attributed to the new features of the extended belief rule base.
The main advantages of which over most of traditional learning ap-
proaches is its simplicity and efficiency because it involves neither
time-consuming iterative learning procedure nor complicated rule
generation mechanisms, but keep the relatively good performance.
The work has been briefly outlined in [13]. This paper aims at
extending, refining, completing and systematizing the results in
[13].

The rest of this paper is organized as follows. Extended belief
rule base and its inference framework are proposed in Section 2,
including a brief overview of belief rule base in the RIMER
approach. In Section 3, we propose a simple but efficient extended
belief rule generation method with no time-consuming iterative
procedure. Section 4 discusses and proves extended belief rule
base inference system as a universal approximator, which shows
the soundness of the methodology and provides the theoretical
basis for successful applications of this new methodology to many
different practical problems. The proposed rule representation,
generation, and inference scheme as well as its performance
are demonstrated in Section 5 using some case studies in oil
pipe leak detection as well as in software defect prediction
compared with some existing approaches. Conclusions are drawn
in Section 6.

2. Extended belief rule based inference methodology

This section introduces the extended belief rule base along with
its inference procedures.

2.1. Extended belief rule base

The belief rule base (BRB) introduced in RIMER approach [30] is
summarized firstly in this section, which is designed with belief
degrees embedded in the entire consequent terms. Then it is ex-
tended into a new belief rule base with belief degrees embedded
in the consequent terms as well as in the all antecedent terms of
each rule.

Suppose a BRB is given by R = {R1,R2, . . . ,RL} with the kth rule
represented as follows [30]:

Rk : IF U is Ak THEN V is fD;bkg; with a rule weight hk and the attribute weight d

ð1Þ

where U represents the antecedent attribute vector (U1, . . . ,UT), V is
the consequent attribute, Ak the packet referential values

Ak
1; . . . ;Ak

T

n o
of antecedents, here Ak

i ði ¼ 1; . . . ; TÞ is the referential

value of the antecedent attribute Ui in the kth rule. T is the total
number of antecedent attributes used in the rule; (D, bk) represents
D with belief degrees bk, i.e., {(D1, b1k), . . . , (DN, bNk)}, where D is the
consequent vector (D1, . . . ,DN), and bk the vector of the belief de-
grees (b1k, . . . ,bNk) for k 2 {1, . . . ,L}, and bsk (s 2 {1, . . . ,N}) represents
the belief degree to which Ds is believed to be the consequent if in
the kth packet rule the input satisfies the packet antecedents Ak. hk

(2 Rþ, k = 1, . . . ,L) is the relative weight of the kth rule and d is the
relative weight vector of the antecedent attributes, di 2 Rþ;
i = 1, . . . ,T. L (>0) is the number of all the packet rules in the rule
base. Moreover,

PN
s¼1bsk 6 1. If

PN
s¼1bsk ¼ 1, the kth packet rule is

said to be complete; otherwise, it is incomplete.
In a rule base, a referential set can be a set of meaningful and

distinctive evaluation standards for describing an attribute, which
are commonly described by linguistic terms to reflect and model
the vagueness or imprecision in the concepts. In (2) and (3) illus-
trated the referential values used in antecedent attributes in a be-
lief rule relevant to safety analysis.

Take for example the following belief rule in safety analysis [17]:

Rk : IF the failure rate is frequent AND the consequence
severity is critical AND the failure consequence
probability is unlikely; THEN the safety estimate is
fðgood;0Þ; ðaverage;0Þ; ðfair;0:7Þ; ðpoor;0:3Þg ð2Þ

This is a special case of the rule in (1) while N = 4, T = 3, U = (U1, U2,
U3) = (failure rate, consequence severity, failure consequence

probability), Ak ¼ Ak
1;A

k
2;A

k
3

� �
¼ ðfrequent; critical;unlikelyÞ,

D ¼ ðD1; . . . ;DNÞ ¼ ðgood; average; fair; poorÞ, and bk = (b1k, b2k, b3k,
b4k) = (0, 0, 0.7, 0.3). The consequent V (= safety estimate) is
described as a belief distribution representation, stating that it is
70% sure that safety level is fair and 30% sure that safety level is
poor. This kind of rule reflects another kind of uncertainty caused
because sometimes evidence available is not sufficient or experts
are not 100% certain to believe in a hypothesis but only to degrees
of belief. If b4k = 0.2, then

P4
s¼1bsk ¼ 0:9 6 1, which means the cor-

relation assessment is incomplete with 10% ignorance, which may
be due to lack of knowledge, so this may reflect the
incompleteness.

In this paper, to facilitate the more general application cases to
handle simultaneously vagueness, incompleteness and uncertainty
and more flexible and simpler rule base generation scheme, the be-
lief rule in (1) is extended with belief degrees embedded in the en-
tire possible antecedent terms of each rule as well, for example, the
belief rule (2) can be extended as follows:
Rk :

IF the failure rate is fðvery low;0Þ; ðlow;0Þ;
ðreasonably low;0Þ; ðaverage;0Þ; ðreasonably frequent;0Þ;
ðfrequent;0Þ; ðhighly frequent;1Þ AND the
consequence severity is fðnegligible;0Þ; ðmarginal;0Þ;
ðmoderate;0Þ; ðcritical;0:3Þ; ðcatastrophic;0:7Þg
AND the failure consequence probability is
fðhighly unlikely;0:7Þ; ðunlikely;0:2Þ;
ðreasonably unlikely;0:1Þ; ðlikely;0Þ; ðreasonably likely;0Þ;
ðhighly likely;0Þ; ðdefinite;0Þg THEN the safety estimate is
fðGood;0Þ; ðAverage;0:1Þ; ðFair;0:3Þ; ðPoor;0:6Þg

ð3Þ
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