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Given any set of six positive parameters, the number of tetrahe-
dra, all having these values as their volume, circumradius and four 
face areas, is studied. We identify all parameters that determine in-
finitely many tetrahedra. On the other hand, we classify parameters 
that determine finitely many tetrahedra and find only four differ-
ent upper bounds, zero, six, eight, and nine, on the numbers of 
tetrahedra. In each case, the upper bound is sharp in the complex 
domain.
In this paper, the upper bounds are obtained through checking 
the dimensions of various quotient algebras of ideals by counting 
monomials. This is done by computing Groebner bases with block 
orders. Partitioning the parameter space into several cases, we find 
either the dimension or an upper bound of it for the quotient alge-
bra in each case. From that, various upper bounds on the number 
of tetrahedra are obtained. To show the upper bounds are sharp, 
we pick rational parameters and study the number of tetrahedra 
through Hermite’s root counting method.
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Fig. 1. Two tetrahedra.

1. Introduction

In 1999, M. Mazur defined a tetrahedron to be rigid if there are no other tetrahedra with the same 
volume, radius of circumscribed sphere, and areas of faces (Mazur, 1999). He proposed a question 
asking whether every tetrahedron is rigid. Specifically, for given six positive constants V , R , A1, A2, 
A3, A4, when there is a tetrahedron having these values as its volume, circumradius and four face 
areas, respectively, is such tetrahedron unique?

This question was answered negatively by Lisoněk and Israel in 2000 (Lisoněk and Israel, 2000). 
They found that, when V =

√
1

48 , R =
√

7
12 , A1 = A2 =

√
7

16 , A3 = A4 = 1
2 , there are two different 

tetrahedra having these values as their volume, circumradius and four face areas, respectively. They 
are shown in Fig. 1, where the tetrahedron on the left side has squares of edge lengths 1, 2, 1, 1, 
2, 2 and the other tetrahedron has squares of edge lengths α1, β1, β2, β2, β1, γ1 with α1 ≈ 0.59, 
β1 ≈ 1.71, β1 ≈ 2.09, γ1 ≈ 0.69 and vertices v1 = (0, 1.5, 0), v2 ≈ (0.77, 1.5, 0), v3 ≈ (0.14, 2.8, 0), 
v4 ≈ (0.63, 2.6, 0.65).

In the same paper by Lisoněk and Israel, they posed more questions. They ask whether for any 
positive constants V , R , A1, A2, A3, A4, there are finitely many tetrahedra, all having these values 
as their respective metric invariants. And, if there are finitely many tetrahedra, what are the upper 
bounds?

In 2005, Yang and Zeng presented a negative solution in Yang and Zeng (2005) and Mucherino 
et al. (2013). When V = 441, R = 43

√
3

6 , A1 = 84
√

3, A2 = A3 = A4 = 63
√

3, they found a family of 
tetrahedra T(x,y) , where (x, y) varies over a component of a cubic curve such that all tetrahedra T(x,y)

share the same metric invariants. The example they proposed is in the case of A2 = A3 = A4. They 
made a conjecture that, when A1, A2, A3, A4 are pairwise distinct, such metric invariants indeed 
determine finitely many tetrahedra. They also conjectured an upper bound nine in these cases.

Yang and Zeng, in 2013, proved their conjectures by claiming that, given six positive numbers V , 
R , A1, A2, A3, A4, there are at most eight tetrahedra with volume V , circumradius R and four face 
areas A1, A2, A3, A4, except in the case that three of the values A1, A2, A3, A4 are equal (Yang and 
Zeng, 2013). The upper bound eight is obtained in the real domain. The cases of three equal face 
areas are not discussed there.

In McConnell (2012), McConnell introduced the concept of pseudo-faces and used a different sys-
tem from that in Lisoněk and Israel (2000) and Yang and Zeng (2005) to study the same problem. 
There, the example of Yang and Zeng in 2005 is generalized. Also, finiteness results are proved in the 
cases of A1 = A2 = A3 = A4 and A1 = A2 �= A3 = A4. However, the cases with only two equal face 
areas are not discussed. Also, none of the upper bounds are given in the paper McConnell (2012).

In this paper, we use a parametric polynomial system with three pseudo-faces introduced by 
McConnell as variables and V , R , A1, A2, A3, A4 as parameters to study the numbers of tetrahe-
dra. The method used here is different from those in Yang and Zeng (2013) and McConnell (2012). 
We mainly apply Groebner basis in studying our parametric polynomial system. Both the finiteness 
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