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A generalized summation by parts algorithm is presented for solv-
ing of difference equations of the form T m(y) − ay = b with vari-
able coefficients, where T denotes the shift operator. Solvability 
of equations of this type with respect to the coefficients of for-
mal symmetry (or formal recursion operator) provides a convenient 
integrability test for evolutionary differential-difference equations 
u,t = f (u−m, . . . , um).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Let F be the set of locally analytic functions depending on a finite number of variables u j ∈ K, 
K =R or C, j ∈ Z, and let the shift operator T act on elements of F according to the rule

T ( f (ui, . . . , u j)) = f (ui+1, . . . , u j+1).

Our goal in this article is to develop an algorithm which allows one either to construct a solution 
y ∈F of the linear difference equation

T m(y) − ay = b, (1)

with an integer exponent m ≥ 1 and given coefficients a, b ∈F , or to prove that the solution does not 
exist. In the latter case, the algorithm should return an obstacle, that is, some non-zero expression in 
terms of the coefficients which would vanish if there was a solution. An important special case
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(T − 1)(y) = b (2)

can be reformulated as the inversion problem for the operator of total difference T − 1. It was 
addressed by many authors in the context of discrete calculus of variations (Kupershmidt, 1985;
Hydon and Mansfield, 2004; Mansfield and Quispel, 2005), see also Olver (1993) for a parallel con-
tinuous theory. In particular, it is well known that K ⊕ im(T − 1) = ker E, where E = ∑

T − j∂ j is the 
difference Euler operator or the variational derivative. The preimage of T − 1 can be computed by use 
of the so-called summation by parts algorithm or by use of a discrete homotopy operator (Hereman et 
al., 2006). A variational interpretation of more general operators T m − a and generalization of discrete 
homotopy operator remain open questions, very interesting from theoretical standpoint; however, this 
approach can hardly give an effective solution method for equation (1).

A motivation for study of equation (1) comes from the theory of differential-difference (or lattice) 
evolutionary equations of the form

∂t(un) = f (un−m, . . . , un+m), n ∈ Z. (3)

Recall, that such an equation is called integrable if it is consistent with an infinite set of evolutionary 
flows of higher orders, or symmetries. Although this property may be not so easy to check interme-
diately, one can deduce that it implies solvability of certain sequence of equations of the form (1)

T m(g j) − a j g j = b j, j = 0,−1, . . . , (4)

where a j and b j are computed explicitly if g0, . . . , g j+1 are already known (see Proposition 17). This 
gives us a test which amounts to stepwise checking of whether equation (4) is solvable with respect 
to g j : if not, then equation (3) is not integrable, if so, then we have to compute g j and to go to the 
next condition for g j−1. In practice, this test turns out to be very useful, although checking of infinite 
number of conditions is formally needed in order to prove the integrability. Moreover, the sequence of 
necessary integrability conditions encoded in relations (4) can be used for classification of the whole 
set of equations under consideration (this problem is certainly much more difficult than testing of 
a given equation and may require additional assumptions such as the existence of an infinite set of 
higher order conservation laws). In the continuous setup, this approach made it possible to solve 
a number of classification problems for integrable partial differential equations of Korteweg–de Vries 
and nonlinear Schrödinger type, see e.g. Sokolov and Shabat (1984), Mikhailov et al. (1987), Mikhailov 
et al. (1991), Mikhailov and Shabat (1993), Meshkov and Sokolov (2012). An exhaustive classification 
of integrable equations (3) at m = 1 (Volterra type lattices) was obtained by Yamilov (1983), but only 
few examples are known at m > 1 so far, the Bogoyavlensky lattices (Bogoyavlensky, 1991) being 
the most well studied ones. Several classification results for other types of lattice equations were 
obtained by Shabat and Yamilov (1991), Adler and Shabat (1997), Adler et al. (2000), Yamilov (2006), 
Adler (2008). The problems of symbolic computation of the higher symmetries, conservation laws, 
recursion operators and Lax pairs were discussed in many papers, see e.g. Göktaş and Hereman (1999), 
Hickman and Hereman (2003), Hereman et al. (2005), Sokolov and Wolf (2001), Tsuchida and Wolf
(2005); integrability tests based on these notions were developed e.g. in Gerdt et al. (1985), Gerdt
(1993), Hereman et al. (1998).

In the problem of solving equation (1), the main issue is related with the complexity of the coeffi-
cients a, b. In particular, the right hand side in (4) becomes more and more involved at each step, so 
that applying the test may turn to be non-trivial. A simple method described in Section 2.2 makes use 
of the expansion (T m − a)−1 = T −m(1 + aT −m + (aT −m)2 + . . .) and allows us to obtain the general 
solution of (1) in explicit form, if it exists. This approach is rather straightforward, but, unfortunately, 
it is practically applicable only if the coefficients are not too complicated.

Section 2.3 contains a more effective ‘generalized summation by parts algorithm’, the main result 
of the article. In short, it is based on simplifications of equation by a sequence of suitable substitutions 
which exist under certain relations between a and b. If all relations are fulfilled then we construct 
the solution after a finite number of steps and if some relation fails then this proves that the solution 
does not exist.

Applications to the integrability problem for the lattice equations are given in Section 3.1. It con-
tains some basic notions and theorems of the symmetry approach which are necessary in order to 
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