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Among multiple gcd algorithms on polynomials as on integers, one 
of the most natural ones performs a sequence of � − 1 phases 
(� is the number of inputs), with each of them being the Euclid 
algorithm on two entries. We present here a complete probabilistic 
analysis of this algorithm, by providing both the average-case and 
the distributional analysis, and by handling in parallel the integer 
and the polynomial cases, for polynomials with coefficients in 
a finite field. The main parameters under consideration are the 
number of iterations in each phase and the evolution of the size 
of the current gcd along the execution. Three phenomena are 
clearly emphasized through this analysis: the fact that almost all 
the computations are performed during the first phase, the great 
difference between the probabilistic behavior of the first phase 
compared to subsequent phases, and, as can be expected, the great 
similarity between the integer and the polynomial cases.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Among arithmetic operations, on polynomials as on integers, the computation of gcd’s plays a 
prominent role. It can even be considered as the fifth main one, with an impressive range of applica-
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tions, described for instance in von zur Gathen and Gerhard (2003). Let us just quote as an example 
the fact that in many symbolic computation systems, a large proportion of the time is devoted to the 
computation of gcd’s on numbers, or on polynomials, in order to keep fractions under an irreducible 
form. Being able to measure the efficiency of a gcd algorithm, and to perform its analysis, is thus 
crucial.

The plain algorithm. Even for two entries, there is a wide variety of gcd algorithms; see, e.g., von zur 
Gathen and Gerhard (2003) or Vallée (2006). In this case, the Euclid algorithm plays a central role. 
Observe that there are many possible variants, in particular in the integer case with fast gcd algo-
rithms; see Brent (1976), Schönhage (1971), Stehlé and Zimmermann (2004). For the general case of 
� entries (� ≥ 2), one of the most natural and basic algorithms consists in performing a succession of 
� − 1 phases, with each of them being the Euclid algorithm on two entries, as described in the book 
(Knuth, 1998).

More precisely, inputs are here either nonnegative integers or univariate polynomials over a finite 
field Fq . In order to compute the gcd of � inputs x1,. . . , x� (� ≥ 2), we consider a sequence of � − 1
phases, that is, of � − 1 gcd computations on two entries. Let y1 := x1, then, for k ∈ [2..�], one suc-
cessively computes yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk). The total gcd is y� := gcd(x1, x2, . . . , x�), 
and it is obtained after � − 1 phases. We call it the plain �-Euclid algorithm.

This is a straightforward algorithm, which cannot be easily extended for computing Bézout coeffi-
cients. We are interested in performing its analysis, making more precise and proving the observations 
made in Knuth (1998): “In most cases, the length of the partial gcd decreases rapidly during the first 
few phases of the calculation, and this will make the remainder of the computation quite fast”. There 
are indeed inputs for which � − 1 phases are required, but, as the probability for two uniformly cho-
sen inputs to be coprime is asymptotically 6/π2 for integers and 2q/(q − 1) for polynomials, this 
algorithm is expected to require in average less steps. We thus do not claim that this naive algorithm 
is efficient.1 However, a first step in analysis of algorithms consists in understanding and precisely 
analyzing even the simplest algorithms; such an analysis is not as trivial as it may first appear and 
then provides a basis of comparison for other algorithms of the same class.

State of the art. To the best of our knowledge, the plain �-Euclid algorithm has not been yet analyzed. 
Its analysis was proposed as an exercise in the second edition of the “Art of Computer Programming” 
(Knuth, 1998), and quoted as a difficult one (HM48). However, the exercise disappears in the third 
edition. . . . The situation contrasts with the case � = 2, where the classical Euclid algorithm and all 
its main variants running on integers or on polynomials are now precisely analyzed. See Berthé and 
Nakada (2000), Friesen and Hensley (1996), Knopfmacher and Knopfmacher, (1988), Ma and von zur 
Gathen (1990) for analyses on polynomials; see Heilbronn (1969), Dixon (1970) for the first analyses 
on integers and Hensley (1994), Vallée (2006), Baladi and Vallée (2005), Lhote and Vallée (2008)
for more recent ones, involving distributional analyses. Here, in all these previous studies, the size 
of an input is defined as the maximum size of its components; and the size is the degree of the 
polynomial, or the logarithm of the integer. The same probabilistic behavior appears in both cases 
(polynomials and integers): with respect to the input size, the mean number of iterations is linear, 
and the arithmetic complexity is quadratic. Furthermore, the distribution of the number of iterations 
is asymptotically Gaussian.

There exists also a probabilistic algorithm proposed in von zur Gathen and Shparlinski (2006) for 
computing gcd’s. It replaces a gcd computation on � entries by a unique gcd on two random linear 
combinations of the initial input. The approach is different: we perform here a probabilistic analysis 
of a deterministic algorithm where the distribution of the inputs is chosen a priori, whereas the 
algorithm developed in von zur Gathen and Shparlinski (2006) is probabilistic, designed as requiring 
few steps, and handles the worst-case. In Section 10, we return to the comparison between the two 
strategies, and make more precise the comparison done in von zur Gathen and Shparlinski (2006, 
Section 3).

1 Nevertheless, we will show that this algorithm is in fact not as “stupid” as it seems to be. . . .
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