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Consider a complex Hamiltonian system and an integral curve. In 
this paper, we give an effective and efficient procedure to put 
the variational equation of any order along the integral curve in 
reduced form provided that the previous one is in reduced form 
with an abelian Lie algebra. Thus, we obtain an effective way to 
check the Morales–Ramis–Simó criterion for testing meromorphic 
Liouville integrability of Hamiltonian systems.
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1. Introduction

Consider a Hamiltonian system of 2n differential equations

(XH ) :
{

q̇i = + ∂ H
∂ pi

ṗi = − ∂ H
∂qi

A first integral is a function of the qi and pi which is constant along the solutions of (XH ). The system 
is called (meromorphically) Liouville integrable (or completely integrable) when it admits n (meromor-
phic) first integrals F1, . . . , Fn which are functionally independent (their differentials are linearly 
independent) and in involution (their Poisson brackets vanish or, equivalently, the associated Hamil-
tonian vector fields X Fi commute). We refer to the reference books (Abraham and Marsden, 1978;
Cushman and Bates, 1997; Audin, 2008) for more on this topic; see also Section 2 for definitions.

The Ziglin–Morales–Ramis theory (see Morales-Ruiz and Ramis, 2010; Audin, 2008 for statements 
and applications) provides mathematical tools to check when a system is non-integrable. This is par-
ticularly useful as Hamiltonian systems generally come as parametrized families. The non-integrability 
criteria allow one to discard the vast majority of values of the parameters for which the system is not 
integrable. The principle is as follows. First, we find a particular solution � of the system (XH ) (gen-
erally from an invariant plane found from symmetries) and we compute variational equations (VEp), 
i.e. systems of linear differential equations governing a Taylor expansion of a solution of (XH ) along 
the particular solution �. The Liouville integrability of (XH ) induces integrability conditions on the 
variational equations (VEp), which in turn imply properties of their monodromy or differential Galois 
groups. Technically, the Morales–Ramis–Simó theorem states that if (XH ) is integrable, then the Lie 
algebras of the differential Galois groups of all variational equations (VEp) must be abelian (all these 
terms are defined in Section 2).

The strength of this criterion is that it turns a geometric condition (integrability) into an algebraic 
one (abelianity of a Lie algebra), thus paving the way for possible computations. However, although 
there exist general algorithms to compute differential Galois groups of reducible systems such as the 
variational equations (VEp) (Feng, 2015; Rettstadt, 2014 or van der Hoeven, 2007), none of them 
are currently even close to being practical or implemented at this time. Furthermore, the size of the 
variational equations (VEp) grows fast, so only a method which uses the structure of the system to 
make it simpler has a chance of being efficient. The main goal of the present paper is to explain how 
to use the structure of the system to make it simpler, which will allow us to check efficiently whether 
its Lie algebra is abelian or not.

Over the past decade, several approaches have been devised to concretely apply this Morales–
Ramis–Simó integrability criterion.

For Hamiltonians of the form H =∑n
i=1

1
2 p2

i + V (q), where V is a potential in q, the first varia-
tional equation is often a direct sum of Lamé equations of the form y′′(x) = (n(n + 1)℘ (x) + B) y(x), 
where ℘ denotes the Weierstrass function associated to an elliptic curve. In this case, Morales has 
elaborated a local criterion to find obstructions to integrability on higher variational equations via 
local computations (see Lemmas 11 and 12 in Morales-Ruiz and Ramis, 2001a, p. 79, and Proposi-
tion 7, p. 81). Maciejewski, Przybylska and Duval have elaborated techniques to handle variational 
equations for the case of Hamiltonians with potentials (Maciejewski and Przybylska, 2006; Duval 
and Maciejewski, 2009, 2014, 2015); see also the works of Combot and coauthors (Combot, 2013;
Combot and Koutschan, 2012; Bostan et al., 2014).

Another approach is to determine numerical trajectories and compute numerical monodromies 
around these. Although it is difficult to obtain rigorous proofs by these methods, they provide sur-
prisingly precise information. They have been developed, for example, by Martínez and Simó (2009), 
by Simon and Simó in the Atwood paper (Pujol et al., 2010), by Simon in the more recent (Simon, 
2014a, 2014b) and by Salnikov in the paper (Salnikov, 2014, 2013).

The general strategy for turning numerical evidence into rigorous proofs is to show that a certain 
commutator is non-zero. This in turn yields calculations of integrals and of residues, which can be 
achieved algorithmically due to their D-finiteness. This is used by Martínez and Simó (2009) and 
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