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a b s t r a c t

A geodesic is the shortest path between two vertices in a connected network. The geodesic is the kernel of
various network metrics including radius, diameter, eccentricity, closeness, and betweenness. These met-
rics are the foundation of much network research and thus, have been studied extensively in the domain
of single-relational networks (both in their directed and undirected forms). However, geodesics for sin-
gle-relational networks do not translate directly to multi-relational, or semantic networks, where vertices
are connected to one another by any number of edge labels. Here, a more sophisticated method for cal-
culating a geodesic is necessary. This article presents a technique for calculating geodesics in semantic
networks with a focus on semantic networks represented according to the Resource Description Frame-
work (RDF). In this framework, a discrete ‘‘walker” utilizes an abstract path description called a grammar
to determine which paths to include in its geodesic calculation. The grammar-based model forms a gen-
eral framework for studying geodesic metrics in semantic networks.

Published by Elsevier B.V.

1. Introduction

The study of networks (i.e. graph theory) is the study of the rela-
tionship between vertices (i.e. nodes) as defined by the edges (i.e.
arcs) connecting them. In path analysis, a path metric function maps
an ordered vertex pair into a real number, where that real number is
the length of the path connecting to the two vertices. Metrics that
utilize the shortest path between two vertices in their calculation
are called geodesic metrics. The geodesic metrics that will be re-
viewed in this article are shortest path, eccentricity [1], radius,
diameter, betweenness centrality [2], and closeness centrality [3].

If G1 is a single-relational network, then G1 = (V,E), where V =
{i, . . . , j}, is the set of vertices and E # (V � V) is a subset of the
product of V. In a single-relational network all the edges have a sin-
gle, homogenous meaning. Because an edge in a single-relational
network is an element of the product of V, it does not have the
ability to represent the type of relationships that exist between
the two vertices it connects. An edge can only denote that there
is a relationship. Without a distinguishing label, all edges in such
networks have a single meaning. Thus, they are called single-rela-
tional networks.1 While a single-relational network supports the

representation of a homogeneous set of relationships, a semantic
network supports the representation of a heterogeneous set of rela-
tionships. For instance, in a single-relational network it is possible to
represent humans connected to one another by friendship edges; in
a semantic network, it is possible to represent humans connected to
one another by friendship, kinship, collaboration, communication,
etc. relationships.

A semantic network denoted Gn can be defined as a set of single-
relational networks such that Gn ¼ ðV ; EÞ, where E ¼ fE0; E1; . . . ; Eng
and for any Ek 2 E; Ek # ðV � VÞ [5]. The meaning of a relationship
in Gn is determined by its set Ek 2 E. Perhaps a more convenient
semantic network representation and the one to be used through-
out the remainder of this article is that of the triple list where
Gn # (V �X � V) and X is a set of edge labels. A single edge in this
representation is denoted by a triple s = hi,x, ji, where vertex i is
connected to vertex j by the edge label x.

In some cases, it is possible to isolate sub-networks of a seman-
tic network and represent the isolated network in an unlabeled
form. Unlabeled geodesic metrics can be used to compute on the
isolated component. However, in many cases, the complexity of
the path description does not support an unlabeled representation.
These scenarios require ‘‘semantically aware” geodesic metrics
that respect a semantic network’s ontology (i.e. the vertex classes
and edge types) [6]. A semantic network is not simply a directed
labeled network. It is a high-level representation of complex ob-
jects and their relationship to one another according to ontological
constraints. There exist various algorithms to study semantically
typed paths in a network [7–11]. Such algorithms assume only a
path between two vertices and do not investigate other features
of the intervening vertices. The benefit of the grammar-based
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1 It is noted that bipartite networks allow for more than one edge meaning to be
inferred because V is the union of two disjoint vertex sets. Thus, edges from set A � V
to set B � V (such that A \ B = ;) can have a different meaning than the edges from B
to A. Also, theoretically, it is possible to represent edge labels as a topological feature
of the graph structure [4]. In other words, there exists an injective function (though
not surjective) from the set of semantic networks to the set of single-relational
networks that preserves the meaning of the edge labels.
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geodesic model presented in this article is that complex paths can
be represented to make use of path ‘‘bookkeeping.” Such book-
keeping investigates intervening vertices even though they may
not be included in the final path solution. For example, it may be
important to determine a set of ‘‘friendship” paths between two
human vertices, where every intervening human works for a par-
ticular organization and has a particular position in that organiza-
tion. While a set of friendship paths is the result of the function, the
path detours to determine employer and position are not. The
technique for doing this is the primary contribution of this article.

A secondary contribution is the unification of the grammar-
based model proposed here with the grammar-based model pro-
posed in [12] for calculating stationary probability distributions
in a subset of the full semantic network (e.g. eigenvector centrality
[13] and PageRank [14]). With the grammar-based model, a single
framework exists that ports many of the popular single-relational
network analysis algorithms to the semantic network domain.
Moreover, an algebra for mapping semantic networks to single-
relational networks has been presented in [15] and can be used
to meaningfully execute standard single-relational network analy-
sis algorithms on distortions of the original semantic network. The
Semantic Web community does not often employee the standard
suite of network analysis algorithms. This is perhaps due to the fact
that the Semantic Web is generally seen as a knowledge-base
grounded in description logics rather than graph-or network-the-
ory. When the Semantic Web community adopts a network inter-
pretation, it can benefit from the extensive body of work found in
the network analysis literature. For example, recommendation
[16], ranking [17], and decision making [6] are a few of the types
of Semantic Web applications that can benefit from a network per-
spective. In other words, graph/network theoretic techniques can
be used to yield innovative solutions on the Semantic Web.

The first half of this article will define a popular set of geodesic
metrics for single-relational networks. It will become apparent from
these definitions, that the more advanced geodesics rely on the short-
est path metric. The second half of the article will present the gram-
mar-based model for calculating a meaningful shortest path in a
semantic network. The other geodesics follow from this definition.

2. Geodesics in single-relational networks

This section will review a collection of popular geodesic metrics
used to characterize a path, a vertex, and a network. The following
list enumerates these metrics and identifies whether they are path,
vertex, or network metrics:

� in- and out-degree: vertex metric,
� shortest path: path metric,
� eccentricity: vertex metric,
� radius: network metric,
� diameter: network metric,
� closeness: vertex metric,
� betweenness: vertex metric.

It is worth noting that besides in- and out-degree, all the met-
rics mentioned utilize a path function q:V � V ? Q to determine
the set of paths between any two vertices in V, where Q is a set
of paths. The premise of this article is that once a path function
is defined for a semantic network, then all of the other metrics
are directly derived from it. In the semantic network path function,
q:V � V �W ? Q returns the number of paths between two verti-
ces according to a user-defined grammar W.

Before discussing the grammar-based geodesic model for
semantic networks, this section will review the geodesic metrics
in the domain of single-relational networks.

2.1. In- and out-degree

The simplest structural metric for a vertex is the vertex’s de-
gree. While this is not a geodesic metric, it is presented as the con-
cept will become necessary in the later section regarding semantic
networks.

For directed networks, any vertex i 2 V has both an in-degree
and an out-degree. The set of edges in E that have i as either its
in- or out-edge is denoted C�:V ? E and C+:V ? E, respectively. If

C�ðiÞ ¼ fðx; yÞjðx; yÞ 2 E ^ y ¼ ig

and

CþðiÞ ¼ fðx; yÞjðx; yÞ 2 E ^ x ¼ ig

then, C�(i) is the subset of edges in E incoming to i and C+(i) is the
subset of edges outgoing from i. The cardinality of the sets is the in-
and out-degree of the vertex, denoted jC�(i)j and jC+(i)j, respectively.

2.2. Shortest path

The shortest path metric is the foundation for all other geodesic
metrics. This metric is defined for any two vertices i, j 2 V such that
the sink vertex j is reachable from the source vertex i in G1 [18]. If j
is unreachable from i, the shortest path between i and j is unde-
fined. The shortest path between any two vertices i and j in an un-
weighted network is the smallest of the set of all paths between i
and j. If q:V � V ? Q is a function that takes two vertices and re-
turns a set of paths Q where for any q 2 Q, q = (i, . . . , j), then the
shortest path between i and j is the min(

S
q2Qjqj � 1), where min re-

turns the smallest value of its domain. The shortest path function is
denoted s : V � V ! N with the function rule

sði; jÞ ¼ min
[

q2qði;jÞ
jqj � 1

 !
:

It is important to subtract 1 from the path length since a path is de-
fined as the set of edges traversed, not the set of vertices traversed.
Thus, for the path q = (a,b,c,d), the jqj is 4, but the path length is 3.

Note that q returns the set of all paths between i and j. Of
course, with the potential for loops, this function could return a
jQj =1. Therefore, in many cases, it is important to not consider
all paths, but just those paths that have the same cardinality as
the shortest path currently found and thus are shortest paths
themselves. It is noted that all the remaining geodesic metrics re-
quire only the shortest path between i and j.

2.3. Eccentricity, radius, and diameter

The radius and diameter of a network require the determination
of the eccentricity of every vertex in V. The eccentricity metric re-
quires the calculation of jVj � 1 shortest path calculations of a par-
ticular vertex [1]. The eccentricity of a vertex i is the largest
shortest path between i and all other vertices in V such that the
eccentricity function e : V ! N has the rule

eðiÞ ¼ max
[
j2V

sði; jÞ
 !

;

where max returns the largest value of its domain.
The radius of the network is the minimum eccentricity of all

vertices in V [19]. The function r : G! N has the rule

rðG1Þ ¼ min
[
i2V

eðiÞ
 !

:

Finally, the diameter of a network is the maximum eccentricity
of the vertices in V [19]. The function d : G! N has the rule
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