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a b s t r a c t

Data clustering is an important and frequently used unsupervised learning method. Recent research has
demonstrated that incorporating instance-level background information to traditional clustering algo-
rithms can increase the clustering performance. In this paper, we extend traditional clustering by intro-
ducing additional prior knowledge such as the size of each cluster. We propose a heuristic algorithm to
transform size constrained clustering problems into integer linear programming problems. Experiments
on both synthetic and UCI datasets demonstrate that our proposed approach can utilize cluster size con-
straints and lead to the improvement of clustering accuracy.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The goal of cluster analysis is to divide data objects into groups
so that objects within a group are similar to one another and differ-
ent from objects in other groups. Traditionally, clustering is viewed
as an unsupervised learning method which groups data objects
based only on the information presented in the dataset without
any external label information [28]. K-means [18] is one of the sim-
plest and most famous clustering algorithms. It defines a centroid
for each cluster, which is usually the mean of a group of objects.
The algorithm starts by choosing K initial centroids, where K is a
user-specified number of desired clusters, and then iteratively re-
fines and updates the centroids until there is no further change
with the centroids.

In real world applications such as image coding clustering, spa-
tial clustering in geoinformatics, and document clustering
[11,14,15,20,24,26,28,17], people usually obtain some background
information of the data objects’ relationships or the approximate
size of each group before conducting clustering. This information
supposes to be very helpful in clustering the data. However, tradi-
tional clustering algorithms do not provide effective mechanisms
to make use of this information.

Recent research has looked at using instance-level background
information, such as pairwise must-link and cannot-link con-
straints. If two objects are known to be in the same group, we

say that they are must-linked. Or if they are known to be in differ-
ent groups, we say that they are cannot-linked. Wagstaff et al.
[29,30] incorporated this type of background information to
K-means algorithm by ensuring that constraints are satisfied at
each iteration during the clustering process. Basu et al. [4,5,7,13]
also considered pairwise constrains to learn an underlying metric
between points while clustering. Other work on learning distance
metrics for constrained clustering can be found in [6,8,9,12,25].
In addition, many methods have been developed to incorporate do-
main knowledge for fuzzy clustering where the data objects can be
assigned to multiple clusters to various degrees (membership val-
ues). In particular, many different types of knowledge hints have
been used for fuzzy clustering, including partial supervision where
some data points have been labeled [23], knowledge-based indica-
tors and guidance including proximity hints where the resem-
blances between some pairs of data points are provided and
uncertainty hints where the confidence or difficulty of the cluster
membership function for a data point is characterized [21], and do-
main knowledge represented in the form of a collection of view-
points (e.g., externally introduced prototypes/representatives by
users) [22]. However, little work has been reported on using the
size constraints for clustering.

There is another type of work focusing on balancing constraints,
i.e., clusters are of approximately the same size or importance. Be-
sides the demands of several applications, balanced clustering is
also helpful in generating more meaningful initial clusters and
avoiding outlier clusters. Banerjee and Ghosh [2,3] showed that a
small sample was sufficient to obtain a core clustering and then
allocated the rest of the data points to the core clusters while sat-
isfying balancing constraints. Zhong and Ghosh [32,33] also took
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balancing constraints into consideration and developed an itera-
tive bipartitioning heuristic for sample assignment. All of the effort
has illustrated that utilizing background knowledge can improve
clustering performance in accuracy and scalability.

Balancing constraints can be viewed as a special case of size
constraints where all the clusters have the same size. Several real
life clustering applications require the clusters that have fixed size,
but not necessarily the equal size for all the clusters. For example, a
typical task in marketing study is customer segmentation where
customers are divided into different groups where a particular
sales team or a specific amount of marketing dollars is allocated
to each group. If each sales team is of different size or the allocation
of marketing dollars is of different amount, then the customer seg-
mentation problem becomes a data clustering problem with size
constraints. Similarly, a job scheduling problem, where a number
of jobs are assigned to different machines/processes, can be mod-
eled as a data clustering problem with size constraints if different
machines/processes have different capacities. Many other prob-
lems such as document clustering where each cluster has a fixed
storage space and spatial clustering where each cluster has a spe-
cific number of spatial objects can be naturally formulated as data
clustering problems with size constraints.

In this paper, we extend balancing constraints to size con-
straints, i.e., based on the prior knowledge of the distribution of
the data, we assign the size of each cluster and try to find a parti-
tion which satisfies the size constraints. We also present some case
studies of considering size constraints and instance-level cannot-
link constraints simultaneously. We propose a heuristic procedure
to solve these constrained clustering problems by transforming
them into integer linear programming optimization problems.
Experiments on synthetic and UCI datasets demonstrate the
improvement of clustering accuracy using our proposed methods.

The rest of the paper is organized as follows. In Section 2, we
present the problem formulation. In Section 3, we describe our
heuristic procedure to produce a near-optimal solution. In Section
4, we present the experimental results. Finally, in Section 5, we
conclude our work and discuss the future work.

2. Problem formulation

In the problem of clustering with size constraints, we have the
prior knowledge of the number of objects in each cluster. And we
can also obtain the partition result of any traditional clustering algo-
rithm, such as K-means. Then the problem is formulated as follows.

Given a data set of n objects, let A = (A1,A2, . . . ,Ap) be a known
partition with p clusters, and NumA = (na1,na2, . . . ,nap) be the num-
ber of objects in each cluster in A. We look for another partition
B = (B1,B2, . . . ,Bp) which maximizes the agreement between A and
B, and NumB = (nb1,nb2, . . . ,nbp) represents the size constraints,
i.e., the number of objects in each cluster in B.

A and B can be represented as n � p partition matrices. Each row
of the matrix represents an object, and each column is for a cluster.
aij = 1 or bij = 1 when object i belongs to cluster j in partition A or B.
A can be represented as

A ¼

1 0 0 . . . 0 0 0
. . .

. . .

1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
0 1 0 . . . 0 0 0

. . .

. . .

0 0 0 . . . 0 0 1
0 0 0 . . . 0 0 1

2
666666666666666664

3
777777777777777775

; ð1Þ

where

Xn

i¼1

aij ¼ naj; j ¼ 1; . . . ; p;

and

Xp

j¼1

aij ¼ 1; i ¼ 1; . . . ;n:

It is easy to see that AAT is an n � n matrix with the values

ðAATÞij ¼
1; i and j are in the same group in A;
0; otherwise:

�
ð2Þ

The problem is to find another partition B, which minimizes

kAAT � BBTk;

satisfying
Pn

i¼1bij ¼ nbj; j ¼ 1; . . . ;p, and
Pp

j¼1bij ¼ 1; i ¼ 1; . . . ; n.
The problem is similar to finding a partition which maximizes

its agreement with another known partition [19].

3. Solution of size constrained clustering

Now, the original size constrained clustering problem becomes
an optimization problem. Here, we propose a heuristic algorithm
to efficiently find the solution.

3.1. The heuristic procedure

To solve the problem stated in the previous section, first of all,
we define

Da ¼ diagðna1;na2; . . . ;napÞ; ð3Þ

and

Db ¼ diagðnb1;nb2; . . . ;nbpÞ: ð4Þ

Let

Uj ¼
1ffiffiffiffiffiffiffi
naj
p

a1j

a2j

. . .

. . .

. . .

anj

2
666666664

3
777777775
; j ¼ 1; . . . ; p; ð5Þ

where each aij 2 {0,1}, andX
i

aij ¼ naj; j ¼ 1; . . . ; p;

X
j

aij ¼ 1; i ¼ 1; . . . ;n:

Then, we can see that actually U = A(Da)�1/2. In the same way, let

Vj ¼
1ffiffiffiffiffiffiffi
nbj

p
b1j

b2j

. . .

. . .

. . .

bnj

2
666666664

3
777777775
; j ¼ 1; . . . ;p; ð6Þ

where each bij 2 {0,1}, andX
i

bij ¼ nbj; j ¼ 1; . . . ; p;

X
j

bij ¼ 1; i ¼ 1; . . . ;n:

Similarly, V = B(Db)�1/2.
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