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Computing the roots of a univariate polynomial is a fundamental 
and long-studied problem of computational algebra with applica-
tions in mathematics, engineering, computer science, and the nat-
ural sciences. For isolating as well as for approximating all complex 
roots, the best algorithm known is based on an almost optimal 
method for approximate polynomial factorization, introduced by 
Pan in 2002. Pan’s factorization algorithm goes back to the split-
ting circle method from Schönhage in 1982. The main drawbacks 
of Pan’s method are that it is quite involved2 and that all roots 
have to be computed at the same time. For the important special 
case, where only the real roots have to be computed, much sim-
pler methods are used in practice; however, they considerably lag 
behind Pan’s method with respect to complexity.
In this paper, we resolve this discrepancy by introducing a hybrid 
of the Descartes method and Newton iteration, denoted ANewDsc, 
which is simpler than Pan’s method, but achieves a run-time com-
parable to it. Our algorithm computes isolating intervals for the 
real roots of any real square-free polynomial, given by an oracle 
that provides arbitrary good approximations of the polynomial’s 
coefficients. ANewDsc can also be used to only isolate the roots 
in a given interval and to refine the isolating intervals to an arbi-
trary small size; it achieves near optimal complexity for the latter 
task.

© 2015 Elsevier Ltd. All rights reserved.

E-mail addresses: msagralo@mpi-inf.mpg.de (M. Sagraloff), mehlhorn@mpi-inf.mpg.de (K. Mehlhorn).
1 The author ordering deviates from the default alphabetic ordering used in Theoretical Computer Science, because the first 

author contributed significantly more to the paper than the second author.
2 In Victor Pan’s own words: “Our algorithms are quite involved, and their implementation would require a non-trivial work, 

incorporating numerous known implementation techniques and tricks”. In fact, we are not aware of any implementation of 
Pan’s method.
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1. Introduction

Computing the roots of a univariate polynomial is a fundamental problem in computational alge-
bra. Many problems from mathematics, engineering, computer science, and the natural sciences can 
be reduced to solving a system of polynomial equations, which in turn reduces to solving a poly-
nomial equation in one variable by means of elimination techniques such as resultants or Gröbner 
Bases. Hence, it is not surprising that this problem has been extensively studied and that numer-
ous approaches have been developed; see McNamee (2002, 2007), McNamee and Pan (2013), Pan
(1997) for an extensive (historical) treatment. Finding all roots of a polynomial and the approximate 
factorization of a polynomial into linear factors are closely related. The most efficient algorithm for 
approximate factorization is due to Pan (2002); it is based on the splitting circle method of Schönhage
(1982) and considerably refines it. From an approximate factorization, one can derive arbitrary good 
approximations of all complex roots as well as corresponding isolating disks; e.g. see Emiris et al.
(2014), Mehlhorn et al. (2015). The main drawbacks of Pan’s algorithm are that it is quite involved 
(see Footnote 2) and that it necessarily computes all roots, i.e., cannot be used to only isolate the 
roots in a given region. It has not yet been implemented. In contrast, simpler approaches, namely 
Aberth’s, Weierstrass–Durand–Kerner’s and QR algorithms, found their way into popular packages 
such as MPSolve (Bini and Fiorentino, 2000) or eigensolve (Fortune, 2002), although their ex-
cellent empirical behavior has never been entirely verified in theory.

In parallel, there is steady ongoing research on the development of dedicated real roots solvers 
that also allow to search for the roots only in a given interval. Several methods (e.g. Sturm method, 
Descartes method, continued fraction method, Bolzano method) have been proposed, and there exist 
many corresponding implementations in computer algebra systems. With respect to computational 
complexity, all of these methods lag considerably behind the splitting circle approach. In this paper, 
we resolve this discrepancy by introducing a hybrid of the Descartes method and Newton iteration, denoted
ANewDsc (read approximate-arithmetic-Newton-Descartes). Our algorithm is simpler than Pan’s algorithm, 
is already implemented with very promising results for polynomials with integer coefficients (Kobel et al.), and 
has a complexity comparable to that of Pan’s method.

1.1. Algorithm and results

Before discussing the related work in more detail, we first outline our algorithm and provide the 
main results. Given a square-free univariate polynomial P with real coefficients, the goal is to compute 
disjoint intervals on the real line such that all real roots are contained in the union of the intervals 
and each interval contains exactly one real root. The Descartes or Vincent–Collins–Akritas3 method 
is a simple and popular algorithm for real root isolation. It starts with an open interval guaranteed 
to contain all real roots and repeatedly subdivides the interval into two open intervals and a split 
point. The split point is a root if and only if the polynomial evaluates to zero at the split point. For 
any interval I , Descartes’ rule of signs (see Section 2.3) allows one to compute an integer v I , which 
bounds the number mI of real roots in I and is equal to mI , if v I ≤ 1. The method discards intervals 
I with v I = 0, outputs intervals I with v I = 1 as isolating intervals for the unique real root contained 
in them, and splits intervals I with v I ≥ 2 further. The procedure is guaranteed to terminate for 
square-free polynomials, as v I = 0, if the circumcircle of I (= the one-circle region of I) contains no 
root of p, and v I = 1, if the union of the circumcircles of the two equilateral triangles with side I
(the two-circle region of I) contains exactly one root of I , see Fig. 1 on page 57.

The advantages of the Descartes method are its simplicity and the fact that it applies to poly-
nomials with real coefficients. The latter has to be taken with a grain of salt. The method uses the 
four basic arithmetic operations (requiring only divisions by two) and the sign-test for numbers in 
the field of coefficients. In particular, if the input polynomial has integer or rational coefficients, the 

3 Descartes did not formulate an algorithm for isolating the real roots of a polynomial but (only) a method for bounding the 
number of positive real roots of a univariate polynomial (Descartes’ rule of signs). Collins and Akritas (1976) based on ideas 
going back to Vincent formulated a bisection algorithm based on Descartes’ rule of signs.
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