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We give a new theoretical tool to solve sparse systems with 
finitely many solutions. It is based on toric varieties and basic 
linear algebra; eigenvalues, eigenvectors and coefficient matrices. 
We adapt Eigenvalue theorem and Eigenvector theorem to work 
with a canonical rectangular matrix (the first Koszul map) and 
prove that these new theorems serve to solve overdetermined 
sparse systems and to count the expected number of solutions.
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0. Introduction

0.1. Overview of the problem

In this article we generalize two methods to solve systems of polynomial equations using a coeffi-
cient matrix. One method is based on the eigenvalue theorem, first noticed in Lazard (1981). Another, 
on the eigenvector theorem, first described in Auzinger and Stetter (1988). Let us start describing 
them.

For simplicity, consider a generic system of n polynomial equations with finitely many solutions 
in C

n , all with multiplicity one,
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f1(x1, . . . , xn) = 0
...

fn(x1, . . . , xn) = 0

where f1, . . . , fn are polynomials in C[x1, . . . , xn]. The quotient ring,

R =C[x1, . . . , xn]/〈 f1, . . . , fn〉,
is a finite-dimensional vector space and its dimension is the number of solutions (we are assuming 
that all the solutions have multiplicity one).

Every polynomial f ∈C[x1, . . . , xn], determines a linear map M f :R →R,

M f (g) = f g, g ∈C[x1, . . . , xn],
where g denotes the class of the polynomial g in the quotient ring R. The matrix of M f is called the 
multiplication matrix associated to the polynomial f .

Theorem (Eigenvalue Theorem). The eigenvalues of M f are { f (ξ1), . . . , f (ξr)}, where {ξ1, . . . , ξr} are the 
solutions of the system of polynomial equations. See Dickenstein and Emiris (2005, Theorem 2.1.4) for a proof.

Theorem (Eigenvector Theorem). Let f = α1x1 + . . . + αnxn be a generic linear form and let M f be its 
multiplication matrix. Assume that B = {1, x1, . . . , xn, . . .} is a finite basis of R formed by monomials. Then 
the left eigenvectors of M f determine all the solutions of the system of polynomial equations. Specifically, if 
v = (v0, . . . , vn, . . .) is a left eigenvector of M f such that v0 = 1, then (v1, . . . , vn) is a solution of the system 
of polynomial equations. See Dickenstein and Emiris (2005, §2.1.3) for a proof.

Now, let us describe the construction of the coefficient matrix (also in the case of polynomial 
equations).

Let d = d1 + . . . + dn − n + 1, where di = deg( f i), 1 ≤ i ≤ n. Let Sd be the space of polynomials of 
degree ≤ d. Consider the following sets of monomials,

Bn = {xm1
1 . . . xmn

n ∈ Sd : dn ≤ mn}
Bn−1 = {xm1

1 . . . xmn
n ∈ Sd \ Bn : dn−1 ≤ mn−1}

...

B1 = {xm1
1 . . . xmn

n ∈ Sd \ B2 : d1 ≤ m1}
B0 = {xm1

1 . . . xmn
n ∈ Sd \ B1}.

Using these sets, we can consider the following linear map,

� : 〈B0〉 × . . . × 〈Bn〉 → Sd, �(g0, . . . , gn) = f0 · g0 +
n∑

i=1

f i · gi,

where the polynomial f0 is a generic linear form and 〈Bi〉 is the vector space generated by Bi , 
0 ≤ i ≤ n. The coefficient matrix M is the matrix of � in the monomial bases B0, . . . , Bn . It is a square 
matrix and can be divided into four blocks,

M =
(

M11 M12
M21 M22

)
.

The relation between the coefficient matrix and the multiplication matrix is the following,
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