Solving a sparse system using linear algebra

CrossMark

César Massri ${ }^{1,2}$
Department of Mathematics, FCEN, University of Buenos Aires, Argentina

A R T I C L E I N F O

Article history:

Received 11 May 2014
Accepted 12 May 2015
Available online 12 June 2015

MSC:

14M25
13P15

Keywords:
Multiplication matrix
Eigenvector
Sparse system
Toric varieties

Abstract

We give a new theoretical tool to solve sparse systems with finitely many solutions. It is based on toric varieties and basic linear algebra; eigenvalues, eigenvectors and coefficient matrices. We adapt Eigenvalue theorem and Eigenvector theorem to work with a canonical rectangular matrix (the first Koszul map) and prove that these new theorems serve to solve overdetermined sparse systems and to count the expected number of solutions.

© 2015 Elsevier Ltd. All rights reserved.

0. Introduction

0.1. Overview of the problem

In this article we generalize two methods to solve systems of polynomial equations using a coefficient matrix. One method is based on the eigenvalue theorem, first noticed in Lazard (1981). Another, on the eigenvector theorem, first described in Auzinger and Stetter (1988). Let us start describing them.

For simplicity, consider a generic system of n polynomial equations with finitely many solutions in \mathbb{C}^{n}, all with multiplicity one,

[^0]\[

\left\{$$
\begin{aligned}
f_{1}\left(x_{1}, \ldots, x_{n}\right) & =0 \\
& \vdots \\
f_{n}\left(x_{1}, \ldots, x_{n}\right) & =0
\end{aligned}
$$\right.
\]

where f_{1}, \ldots, f_{n} are polynomials in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. The quotient ring,

$$
\mathcal{R}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left\langle f_{1}, \ldots, f_{n}\right\rangle,
$$

is a finite-dimensional vector space and its dimension is the number of solutions (we are assuming that all the solutions have multiplicity one).

Every polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, determines a linear map $M_{f}: \mathcal{R} \rightarrow \mathcal{R}$,

$$
M_{f}(\bar{g})=\overline{f g}, \quad g \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right],
$$

where \bar{g} denotes the class of the polynomial g in the quotient ring \mathcal{R}. The matrix of M_{f} is called the multiplication matrix associated to the polynomial f.

Theorem (Eigenvalue Theorem). The eigenvalues of M_{f} are $\left\{f\left(\xi_{1}\right), \ldots, f\left(\xi_{r}\right)\right\}$, where $\left\{\xi_{1}, \ldots, \xi_{r}\right\}$ are the solutions of the system of polynomial equations. See Dickenstein and Emiris (2005, Theorem 2.1.4) for a proof.

Theorem (Eigenvector Theorem). Let $f=\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}$ be a generic linear form and let M_{f} be its multiplication matrix. Assume that $B=\left\{1, x_{1}, \ldots, x_{n}, \ldots\right\}$ is a finite basis of \mathcal{R} formed by monomials. Then the left eigenvectors of M_{f} determine all the solutions of the system of polynomial equations. Specifically, if $v=\left(v_{0}, \ldots, v_{n}, \ldots\right)$ is a left eigenvector of M_{f} such that $v_{0}=1$, then $\left(v_{1}, \ldots, v_{n}\right)$ is a solution of the system of polynomial equations. See Dickenstein and Emiris (2005, §2.1.3) for a proof.

Now, let us describe the construction of the coefficient matrix (also in the case of polynomial equations).

Let $d=d_{1}+\ldots+d_{n}-n+1$, where $d_{i}=\operatorname{deg}\left(f_{i}\right), 1 \leq i \leq n$. Let S_{d} be the space of polynomials of degree $\leq d$. Consider the following sets of monomials,

$$
\begin{aligned}
B_{n} & =\left\{x_{1}^{m_{1}} \ldots x_{n}^{m_{n}} \in S_{d}: d_{n} \leq m_{n}\right\} \\
B_{n-1} & =\left\{x_{1}^{m_{1}} \ldots x_{n}^{m_{n}} \in S_{d} \backslash B_{n}: d_{n-1} \leq m_{n-1}\right\} \\
& \vdots \\
B_{1} & =\left\{x_{1}^{m_{1}} \ldots x_{n}^{m_{n}} \in S_{d} \backslash B_{2}: d_{1} \leq m_{1}\right\} \\
B_{0} & =\left\{x_{1}^{m_{1}} \ldots x_{n}^{m_{n}} \in S_{d} \backslash B_{1}\right\} .
\end{aligned}
$$

Using these sets, we can consider the following linear map,

$$
\Psi:\left\langle B_{0}\right\rangle \times \ldots \times\left\langle B_{n}\right\rangle \rightarrow S_{d}, \quad \Psi\left(g_{0}, \ldots, g_{n}\right)=f_{0} \cdot g_{0}+\sum_{i=1}^{n} f_{i} \cdot g_{i}
$$

where the polynomial f_{0} is a generic linear form and $\left\langle B_{i}\right\rangle$ is the vector space generated by B_{i}, $0 \leq i \leq n$. The coefficient matrix M is the matrix of Ψ in the monomial bases B_{0}, \ldots, B_{n}. It is a square matrix and can be divided into four blocks,

$$
M=\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right) .
$$

The relation between the coefficient matrix and the multiplication matrix is the following,

https://daneshyari.com/en/article/403027

Download Persian Version:

https://daneshyari.com/article/403027

Daneshyari.com

[^0]: E-mail address: cmassri@dm.uba.ar.
 ${ }^{1}$ Address for correspondence: Department of Mathematics, FCEN, University of Buenos Aires, Argentina. Postal address: 1428. Tel.: +54 1145763335.
 ${ }^{2}$ The author was fully supported by CONICET, Argentina.
 http://dx.doi.org/10.1016/j.jsc.2015.06.003
 0747-7171/© 2015 Elsevier Ltd. All rights reserved.

