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In well-known work, Kazhdan and Lusztig (1979) defined a new set 
of Hecke algebra basis elements (actually two such sets) associated 
to elements in any Coxeter group. Often these basis elements are 
computed by a standard recursive algorithm which, for Coxeter 
group elements of long length, generally involves computing most 
basis elements corresponding to Coxeter group elements of smaller 
length. Thus, many calculations simply compute all basis elements 
associated to a given length or less, even if the interest is in 
a specific Kazhdan–Lusztig basis element. Similar remarks apply 
to “parabolic” versions of these basis elements defined later 
by Deodhar (1987, 1990), though the lengths involved are the 
(smaller) lengths of distinguished coset representatives. We give an 
algorithm which targets any given Kazhdan–Lusztig basis element 
or parabolic analog and does not precompute any other Kazhdan–
Lusztig basis elements. In particular it does not have to store them. 
This results in a considerable saving in memory usage, enabling 
new calculations in an important case (for finite and algebraic 
group 1-cohomology with irreducible coefficients) analyzed by 
Scott–Xi (2010).
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1. Introduction

This note addresses a need we have perceived for a non-recursive algorithm focused on deter-
mining coefficients in Kazhdan–Lusztig polynomials P x,y associated to a single y in a given Coxeter 
group W , or equivalently, to that of a single Kazhdan–Lusztig Hecke algebra basis element C ′

y in the 
notation of Kazhdan and Lusztig (1979) or Deodhar (1990, p. 101). Our approach here applies also 
to the parabolic Kazhdan–Lusztig polynomials P J

x,y and basis elements J C ′
y (for an appropriate Hecke 

algebra right module M = M J ) in the notation of Deodhar (1990, p. 113). The parabolic notations 
are defined only for y “distinguished” (shortest) in its right coset W J y in W , and there is a similar 
requirement on x.

We follow the notation of Deodhar (1990) closely. The Hecke algebra of W is denoted H. It is a 
free R-module, where R is the ring Z[q1/2, q−1/2], with basis elements Tx , x ∈ W , as discussed in 
Deodhar (1990, §3), following standard terminology. The identity element of W is denoted e, and 
Te is the identity of the ring H. The set J is a subset of the set S of fundamental generators of 
W and serves as a set of fundamental generators of the Coxeter group W J . The set of distinguished 
right coset representatives of W J in W is denoted W J . Henceforth, we fix a subset J , which may be 
the empty set. The module M = M J has a basis {mx}x∈W J with mx = me Tx for x ∈ W J and me T w =
q�(w)me for w ∈ W J . See the displayed action (Deodhar, 1990, p. 113) of H on M . We mention 
that the cited display corrects an earlier misprint in the middle term of a similar display (Deodhar, 
1987, p. 485). We also remark that the modules considered there and here are “tensor induced” from 
evident rank 1 modules for the Hecke algebra corresponding to W J . (Though M is a right H-module, 
the action of the commutative ring R is often written on the left.) With this terminology, we have

J C ′
y = q−�(y)/2

∑
x≤y

P J
x,y(q)me Tx (x, y ∈ W J ). (*)

We will return to this equation later. It is part of Deodhar (1990, Prop. 5.1(i)), the parabolic analog of 
Kazhdan and Lusztig (1979, (1.1.c)). If s ∈ S , we have ∅C ′

s = C ′
s = q−1/2(Te + Ts). When the group W J is 

finite, with element w0
J of maximal length, we have P J

x,y = P w0
J x,w0

J y . See Deodhar (1987, Prop. 3.4), 
applied through the duality set-up of Deodhar (1991, Rem. 2.6). It is worth noting that, even when 
W J is finite, the basic recursion (Deodhar, 1990, Prop. 5.2(iii))1 for the parabolic Kazhdan–Lusztig 
polynomials P J

x,y is much more effective than the corresponding non-parabolic ( J = ∅) recursion for 
computing the polynomials P w0

J x,w0
J y . We will call (Deodhar, 1990, Prop. 5.2(iii)) the Deodhar recur-

sion (to distinguish it from the more elaborate Deodhar algorithm we will discuss later). Explicitly, 
the Deodhar recursion states the following, with J μ(z, y) denoting the coefficient of q(�(y)−�(z)−1)/2

in P J
z,y:

Let y, ys ∈ W J with s ∈ S and y < ys. Then J C ′
yC ′

s = J C ′
ys +

J∑
z∈W J

zs<z or zs/∈W J

J μ(z, y)C ′
z.

It makes sense also to call the J = ∅ case, equivalent to Kazhdan and Lusztig (1979, (2.3b) via (1.1.1c)), 
the Kazhdan–Lusztig recursion.

Next, following Deodhar (1990, p. 114), we define, for each finite sequence s = (s1, s2, . . . sk) of 
elements of S whose product π(s) = s1s2 · · · sk has length k, the element

J D ′
s = meC ′

s1
C ′

s2
· · · C ′

sk
. ( J D ′

s)

In our algorithm we need to compute a lot of these, but, fortunately for memory requirements, there 
is no need to store them. Deodhar (1990, Prop. 5.3(i)) gives closed forms for these elements, though 

1 The reader may notice there is a misprint in part (ii) of the same proposition (Deodhar, 1990, Prop. 5.2), where − f J should 
simply be f , representing the expression q1/2 + q−1/2. This is irrelevant to the recursion in part (iii).
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