
Journal of Symbolic Computation 73 (2016) 244–249

Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

Computing individual Kazhdan–Lusztig basis

elements ✩

Leonard L. Scott a, Timothy Sprowl b

a Department of Mathematics, University of Virginia, Charlottesville, VA 22903, United States
b 9170 Ivy Springs Place, Mechanicsville, VA 23116, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 October 2014
Accepted 1 May 2015
Available online 12 June 2015

MSC:
20G05

Keywords:
Kazhdan–Lusztig polynomials
Avoiding recursion
1-cohomology

In well-known work, Kazhdan and Lusztig (1979) defined a new set
of Hecke algebra basis elements (actually two such sets) associated
to elements in any Coxeter group. Often these basis elements are
computed by a standard recursive algorithm which, for Coxeter
group elements of long length, generally involves computing most
basis elements corresponding to Coxeter group elements of smaller
length. Thus, many calculations simply compute all basis elements
associated to a given length or less, even if the interest is in
a specific Kazhdan–Lusztig basis element. Similar remarks apply
to “parabolic” versions of these basis elements defined later
by Deodhar (1987, 1990), though the lengths involved are the
(smaller) lengths of distinguished coset representatives. We give an
algorithm which targets any given Kazhdan–Lusztig basis element
or parabolic analog and does not precompute any other Kazhdan–
Lusztig basis elements. In particular it does not have to store them.
This results in a considerable saving in memory usage, enabling
new calculations in an important case (for finite and algebraic
group 1-cohomology with irreducible coefficients) analyzed by
Scott–Xi (2010).

© 2015 Elsevier Ltd. All rights reserved.

✩ Some of the results of this paper were written in the second author’s 2013 thesis for the Computer Science major at
the University of Virginia, reporting on a project with the first author supported by the National Science Foundation grant
DMS-1001900.

E-mail addresses: lls2l@virginia.edu (L.L. Scott), tim.spr@gmail.com (T. Sprowl).

http://dx.doi.org/10.1016/j.jsc.2015.05.003
0747-7171/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jsc.2015.05.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
mailto:lls2l@virginia.edu
mailto:tim.spr@gmail.com
http://dx.doi.org/10.1016/j.jsc.2015.05.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2015.05.003&domain=pdf

L.L. Scott, T. Sprowl / Journal of Symbolic Computation 73 (2016) 244–249 245

1. Introduction

This note addresses a need we have perceived for a non-recursive algorithm focused on deter-
mining coefficients in Kazhdan–Lusztig polynomials P x,y associated to a single y in a given Coxeter
group W , or equivalently, to that of a single Kazhdan–Lusztig Hecke algebra basis element C ′

y in the
notation of Kazhdan and Lusztig (1979) or Deodhar (1990, p. 101). Our approach here applies also
to the parabolic Kazhdan–Lusztig polynomials P J

x,y and basis elements J C ′
y (for an appropriate Hecke

algebra right module M = M J) in the notation of Deodhar (1990, p. 113). The parabolic notations
are defined only for y “distinguished” (shortest) in its right coset W J y in W , and there is a similar
requirement on x.

We follow the notation of Deodhar (1990) closely. The Hecke algebra of W is denoted H. It is a
free R-module, where R is the ring Z[q1/2, q−1/2], with basis elements Tx , x ∈ W , as discussed in
Deodhar (1990, §3), following standard terminology. The identity element of W is denoted e, and
Te is the identity of the ring H. The set J is a subset of the set S of fundamental generators of
W and serves as a set of fundamental generators of the Coxeter group W J . The set of distinguished
right coset representatives of W J in W is denoted W J . Henceforth, we fix a subset J , which may be
the empty set. The module M = M J has a basis {mx}x∈W J with mx = me Tx for x ∈ W J and me T w =
q�(w)me for w ∈ W J . See the displayed action (Deodhar, 1990, p. 113) of H on M . We mention
that the cited display corrects an earlier misprint in the middle term of a similar display (Deodhar,
1987, p. 485). We also remark that the modules considered there and here are “tensor induced” from
evident rank 1 modules for the Hecke algebra corresponding to W J . (Though M is a right H-module,
the action of the commutative ring R is often written on the left.) With this terminology, we have

J C ′
y = q−�(y)/2

∑
x≤y

P J
x,y(q)me Tx (x, y ∈ W J). (*)

We will return to this equation later. It is part of Deodhar (1990, Prop. 5.1(i)), the parabolic analog of
Kazhdan and Lusztig (1979, (1.1.c)). If s ∈ S , we have ∅C ′

s = C ′
s = q−1/2(Te + Ts). When the group W J is

finite, with element w0
J of maximal length, we have P J

x,y = P w0
J x,w0

J y . See Deodhar (1987, Prop. 3.4),
applied through the duality set-up of Deodhar (1991, Rem. 2.6). It is worth noting that, even when
W J is finite, the basic recursion (Deodhar, 1990, Prop. 5.2(iii))1 for the parabolic Kazhdan–Lusztig
polynomials P J

x,y is much more effective than the corresponding non-parabolic (J = ∅) recursion for
computing the polynomials P w0

J x,w0
J y . We will call (Deodhar, 1990, Prop. 5.2(iii)) the Deodhar recur-

sion (to distinguish it from the more elaborate Deodhar algorithm we will discuss later). Explicitly,
the Deodhar recursion states the following, with J μ(z, y) denoting the coefficient of q(�(y)−�(z)−1)/2

in P J
z,y:

Let y, ys ∈ W J with s ∈ S and y < ys. Then J C ′
yC ′

s = J C ′
ys +

J∑
z∈W J

zs<z or zs/∈W J

J μ(z, y)C ′
z.

It makes sense also to call the J = ∅ case, equivalent to Kazhdan and Lusztig (1979, (2.3b) via (1.1.1c)),
the Kazhdan–Lusztig recursion.

Next, following Deodhar (1990, p. 114), we define, for each finite sequence s = (s1, s2, . . . sk) of
elements of S whose product π(s) = s1s2 · · · sk has length k, the element

J D ′
s = meC ′

s1
C ′

s2
· · · C ′

sk
. (J D ′

s)

In our algorithm we need to compute a lot of these, but, fortunately for memory requirements, there
is no need to store them. Deodhar (1990, Prop. 5.3(i)) gives closed forms for these elements, though

1 The reader may notice there is a misprint in part (ii) of the same proposition (Deodhar, 1990, Prop. 5.2), where − f J should
simply be f , representing the expression q1/2 + q−1/2. This is irrelevant to the recursion in part (iii).

Download English Version:

https://daneshyari.com/en/article/403031

Download Persian Version:

https://daneshyari.com/article/403031

Daneshyari.com

https://daneshyari.com/en/article/403031
https://daneshyari.com/article/403031
https://daneshyari.com

