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Ternary sextics and quaternary quartics are the smallest cases 
where there exist nonnegative polynomials that are not sums 
of squares (SOS). A complete classification of the difference 
between these cones was given by G. Blekherman via analyzing 
the extreme rays of the corresponding dual cones. However, an 
exact computational approach in order to build separating extreme 
rays for nonnegative polynomials that are not sums of squares 
is a widely open problem. We provide a method substantially 
simplifying this computation for certain classes of polynomials on 
the boundary of the PSD cones. In particular, our method yields 
separating extreme rays for every nonnegative ternary sextic with 
at least seven zeros, which proves a slight variation of a conjecture 
by Blekherman for many instances. As an application, we compute 
rational certificates for some prominent polynomials.

Published by Elsevier Ltd.

1. Introduction

We consider real polynomials in the vector space of all homogeneous polynomials in n variables 
of degree d, denoted by Hn,d . For every p ∈ Hn,d we denote its real projective variety as V(p). Let 
Pn,d ⊂ Hn,d be the cone of all nonnegative polynomials in n variables of degree d.

Inside Hn,2d , there are two full dimensional convex cones of special interest, the cone of non-
negative polynomials and the cone of sums of squares (for a general background about nonnegative 
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polynomials and sums of squares see e.g. Delzell and Prestel, 2001; Lasserre, 2000/2001; Marshall, 
2008; Reznick, 2000; for some metric and convexity properties of these cones see Blekherman, 2004).

Pn,2d := {
f ∈ Hn,2d: f (x) ≥ 0, for all x ∈Rn},

Σn,2d :=
{

f ∈ Pn,2d: f =
∑

i

f 2
i for some f i ∈ Hn,d

}
.

The investigation of the relationship between the cone of nonnegative polynomials and the cone of 
sums of squares began in the seminal work of Hilbert when he showed that the cone of nonnegative 
polynomials coincides with the cone of sums of squares exactly in the cases of bivariate forms (n = 2), 
quadratic forms (2d = 2) and ternary quartics (n = 3, 2d = 4) (Hilbert, 1888).

The Motzkin polynomial m(x, y, z) := x4 y2 + x2 y4 − 3x2 y2z2 + z6 was the first explicitly known 
example for a nonnegative polynomial which is not a sum of squares. Most proofs for this fact are 
based on term by term inspections (see e.g. Motzkin, 1983; Reznick, 2000). In near past other proofs 
were found, e.g. using representation theory (see Bosse, 2007).

In Blekherman (2006), Blekherman showed that for fixed dimension 2d ≥ 4 there are significantly 
more nonnegative polynomials than sums of squares as n tends to infinity. However, the question 
of precisely when nonnegative polynomials begin to significantly overtake sums of squares is much 
less understood. In the smallest cases where there exist nonnegative polynomials which are not sums 
of squares ((n, 2d) = (3, 6), (4, 4)) the general conjecture is that these two cones do not differ very 
much. This conjecture is supported by the following two facts: Firstly, the maximal dimensional dif-
ference between exposed faces of the cone of nonnegative polynomials and sums of squares is one 
(see Blekherman et al., 2013). Secondly, all extreme rays of the dual sums of squares cone Σ∗

3,6 have 
rank one or rank seven (see Blekherman, 2012).

Recently, in Blekherman et al. (2012), it is shown that, except the discriminant, there is a unique 
component of the algebraic boundary of Σ3,6 with degree 83 200, which indicates the complicated 
structure of the SOS cone. But still, the geometry and the relationship between these two cones in 
the smallest cases are less understood.

In the smallest cases (n, 2d) = (3, 6) and (n, 2d) = (4, 4), Blekherman shows that it is precisely 
the Cayley–Bacharach relation that prevents sums of squares from filling out the cone of nonnegative 
polynomials. More precisely, in Blekherman (2012), it is shown that every separating extreme ray 
in the dual SOS cone for a given nonnegative polynomial that is not a sum of squares depends on 
a 9-point configuration for (n, 2d) = (3, 6) resp. an 8-point configuration for (n, 2d) = (4, 4) coming 
from the intersection of two qubic resp. three quadric polynomials. Furthermore, given an appropriate 
9-point (resp. 8-point) configuration, one can write down an extreme ray of the dual SOS cone (see 
Theorems 2.6 and 2.7) corresponding to faces of maximal dimension of the SOS cone. In Blekherman
(in press), Blekherman extends the investigation of the extreme rays of the dual sums of squares 
cones, especially for ternary forms.

A central problem in this area is how to determine the separating inequalities efficiently. This 
can always be done in a numerical way (see Section 2.2), but is widely open for exact methods 
currently. Of course, symbolic results are strongly preferred – not only since they provide algebraic 
certificates, which are exact. Furthermore, they can also be connected to the whole machinery of 
algebraic geometry and thus be used to tackle follow-up questions (like the semi-algebraic description 
of appropriate nine point configurations for the Motzkin polynomial, which we provide here; see e.g., 
Fig. 1). Hence, finding constructive symbolic methods for computing these inequalities is one main 
research issue. Blekherman’s result does not provide an efficient symbolic way to obtain a proper 
9-point (resp. 8-point) configuration to solve this problem (see Section 2.2 for further details).

The key idea of this article is to construct a proper 9-point (resp. 8-point) configuration out of 
a given initial set of points. Specifically, we investigate nonnegative polynomials p which lie on the 
boundary of the cones P3,6 and P4,4 (which cover most of the explicitly known nonnegative poly-
nomials that are not SOS, see Blekherman, 2006). Our main result, Theorem 3.1, provides a sufficient 
condition for using k zeros of p as a subset of a 9-point (resp. 8-point) configuration. The idea is to 
fill up the set of k zeros with 9 −k (resp. 8 −k) points such that a genericity and a quadratic condition 
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