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We consider Conway polynomials of two-bridge links as Euler con-
tinuant polynomials. As a consequence, we obtain new and ele-
mentary proofs of classical Murasugi’s 1958 alternating theorem 
and Hartley’s 1979 trapezoidal theorem. We give a modulo 2 con-
gruence for links, which implies the classical Murasugi’s 1971 con-
gruence for knots. We also give sharp bounds for the coefficients 
of Euler continuants and deduce bounds for the Alexander poly-
nomials of two-bridge links. These bounds improve and generalize 
those of Nakanishi–Suketa’s 1996. We easily obtain some bounds 
for the roots of the Alexander polynomials of two-bridge links. This 
is a partial answer to Hoste’s conjecture on the roots of Alexander 
polynomials of alternating knots.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the Conway polynomial of a two-bridge link as an Euler continuant 
polynomial. We study the problem of determining whether a given polynomial is the Conway polyno-
mial of a two-bridge link (or knot), or equivalently, if it is an Euler continuant polynomial. For small 
degrees, this problem can be solved by an exhaustive search of possible two-bridge links. Here, we 
give necessary conditions on the coefficients of the polynomial, which can be tested for high degree 
polynomials.
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In Section 2 we present Euler continuant polynomials and give some properties of their coeffi-
cients. We show their relations with the Fibonacci polynomials fk defined by:

f0 = 0, f1 = 1, fn+2(z) = zfn+1(z) + fn(z).

In Section 3, we recall the definitions of two-bridge links and we present the description of the 
Conway polynomial of a two-bridge link as an extended Euler continuant polynomial. We obtain a 
characterization of modulo 2 two-bridged Conway polynomials.

Theorem 3.5. Let ∇(z) ∈ Z[z] be the Conway polynomial of a two-bridge link (or knot). There exists a Fibo-
nacci polynomial f D(z) such that ∇(z) ≡ f D(z) (mod 2).

We give a simple method (Algorithm 3.6) that determines the integer D such that ∇(z) ≡
f D(z) (mod 2). This is used to test when ∇(z) ≡ 1 (mod 2), which is a necessary condition to be a 
two-bridge Lissajous knot.

In Section 4, we find inequalities for the coefficients of the Conway polynomials of two-bridge 
links denoted by

∇m(z) =
� m

2 �∑
k=0

cm−2kzm−2k.

Theorem 4.1. For k ≥ 0,

|cm−2k| ≤
(

m − k

k

)
|cm|.

If equality holds for some integer 0 < k < �m
2 �, then it holds for all integers 0 ≤ k ≤ �m

2 �. In this case, the 
link is isotopic to the link C(2, 2, . . . , 2), or to the torus link T(2, m) = C(2, −2, . . . , (−1)m−12), up to mirror 
symmetry.

When |cm| 	= 1, we have the following sharper bounds:

Theorem 4.4. Let g ≥ 1 be the greatest prime divisor of cm, and let k 	= 0. Then

|cm−2k| ≤
((

m − k − 1

k

)
+ 1

g

((
m − k − 1

k − 1

)
− 1

))
|cm| + 1.

Equality holds for C(2g, 2, . . . , 2) and C(2g, −2, 2, . . . , (−1)m−12).

In Section 5, we apply our results to the Alexander polynomials. Our modulo 2 congruence of 
Theorem 3.5 provides a simple proof of a congruence of Murasugi (1971) for periodic knots (two-
bridge knots have period two). Moreover, we deduce a congruence for the Hosokawa polynomials of 
two-bridge links (Corollary 5.5). Then, we obtain a simple proof of both the Murasugi alternating the-
orem (Murasugi, 1958, 1996) and the Hartley trapezoidal theorem (Hartley, 1979) (see also Kanenobu, 
1984) using the trapezoidal property:

Theorem 4.6. Let K be a two-bridge link (or knot). Let

∇K = cm

(� m
2 �∑

i=0

(−1)iαi fm−2i+1

)
, α0 = 1

be its Conway polynomial written in the Fibonacci basis. Then we have

1. α j ≥ 0, j = 0, . . . , �m
2 �.

2. If αi = 0 for some i > 0 then α j = 0 for j ≥ i.
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