Combinatorial excess intersection

Jose Israel Rodriguez
Department of Applied and Computational Mathematics and Statistics, 153 Hurley Hall, Notre Dame, IN 46556, United States

A R T I C L E I N F O

Article history:

Received 15 October 2013
Accepted 29 March 2014
Available online 28 September 2014

Keywords:

Excess intersection
Newton polytopes
Combinatorics
Numerical algebraic geometry
Mixed volume

Abstract

We provide formulas and develop algorithms for computing the excess numbers of an ideal. The solution for monomial ideals is given by the mixed volumes of polytopes. These results enable us to design numerical algebraic geometry homotopies to compute excess numbers of any ideal.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a homogeneous ideal $\mathcal{I} \subset \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$, and let f_{1}, \ldots, f_{n} be homogeneous polynomials in \mathcal{I}. Since $\left(f_{1}, \ldots, f_{n}\right) \subset \mathcal{I}$, we have $\mathbf{V}\left(f_{1}, \ldots, f_{n}\right) \supset \mathbf{V}(\mathcal{I})$. The excess intersection of the variety of $\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ with respect to the variety of \mathcal{I} is defined as the quasiprojective variety $\mathbf{V}\left(f_{1}, \ldots, f_{n}\right) \backslash \mathbf{V}(\mathcal{I})$. We define the excess number $E_{\bullet}\left(\mathcal{I} ; f_{1}, \ldots, f_{n}\right)$ of an ideal \mathcal{I} to be the number of solutions in $\mathbf{V}\left(f_{1}, \ldots, f_{n}\right) \backslash \mathbf{V}(\mathcal{I})$.

Excess intersections are a well studied problem with applications in enumerative geometry, machine learning Király et al. (2012a, 2012b), and algebraic statistics (Jost, 2013). In addition, there is a well developed theory of Segre classes to study this problem that has been exploited in Bates et al. (2013), Di Rocco et al. (2011), Moe and Qviller (2012) using computational algebraic geometry as well. Recent work by Paolo Aluffi has pushed this area even further in Aluffi (2013). However, the motivation for this paper came at the 2012 Institute for Mathematics and its Applications Participating Institution Summer Program for Graduate Students in Algebraic Geometry for Applications by

[^0]Mike Stillman. We will focus on the numerical algebraic geometry perspective, where it is ideal to solve square systems of equations, meaning the number of unknowns equals the number of equations. So by understanding the zero-dimensional solutions of an excess intersection of an ideal, we can study the ideal itself. Our computations were performed with Bertini (Bates et al.), PHCpack (Verschelde), and Macaulay2 (Grayson and Stillman).

We begin our study in the case that \mathcal{I} is an ideal generated by $B_{1}, B_{2}, \ldots, B_{l}$, and f_{1}, \ldots, f_{n} define a $B_{\mathcal{I}}$-system of equations of degree $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.

Definition 1. Let \mathcal{I} be an ideal of $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ generated by B_{1}, \ldots, B_{l} whose respective degrees are p_{1}, \ldots, p_{l}. Suppose ($d_{1}, d_{2}, \ldots, d_{n}$) is such that

$$
\min \left(d_{1}, d_{2}, \ldots, d_{n}\right) \geq \max \left(p_{1}, \ldots, p_{l}\right)
$$

Let $a_{i j}$ denote a form of degree $d_{i}-\operatorname{deg} B_{j}$. If the forms f_{1}, \ldots, f_{n} are given by

$$
\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 l} \\
a_{21} & \cdots & a_{2 l} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n l}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
\vdots \\
B_{l}
\end{array}\right],
$$

then we say f_{1}, \ldots, f_{n} are a $B_{\mathcal{I}}$-system of degree $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
The space of $B_{\mathcal{I}}$-system's with degree $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is parameterized by the coefficients of the homogeneous polynomials $a_{i j}$. If \mathcal{I} is generated by B_{1}, \ldots, B_{l}, then we denote the excess number of a general $B_{\mathcal{I}}$-system with degree $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ as $E_{\bullet}\left(\mathcal{I} ; d_{1}, \ldots, d_{n}\right)$.

In the first section we will be interested in determining excess numbers of $B_{\mathcal{I}}$-system's where B_{1}, \ldots, B_{l} are monomials.

At times it will be more convenient to work with the equivalence number

$$
E_{\circ}\left(\mathcal{I} ; d_{1}, \ldots, d_{n}\right):=d_{1} \cdots d_{n}-E_{\bullet}\left(\mathcal{I} ; d_{1}, \ldots, d_{n}\right) .
$$

This definition is inspired by the notion of the equivalence in Fulton (1998), Chapter 6. This number is the difference between the Bezout bound and the excess number in the cases we consider. The contributions of the paper include numerical algebraic geometry algorithms to compute excess numbers and a combinatorial proof of the theorem below. This theorem can be proven easily using Fulton-MacPherson intersection theory, and in fact doing so generalizes the result to any ideal generated by a regular sequence. But in the proof we present, we will see how $E_{\mathbf{0}}\left(\mathcal{I} ; d_{1}, \ldots, d_{n}\right)$ and $E_{0}\left(\mathcal{I} ; d_{1}, \ldots, d_{n}\right)$ relate to the volume of a subdivided simplex. The algorithms we present take advantage of the polyhedral structure in our problem to give bounds (lower and upper-bound) for an excess number.

Theorem 2. Let \mathcal{I} be an ideal of $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ generated by $B_{1}, B_{2}, \ldots, B_{k}$ such that $B_{i}=x_{i}^{p_{i}}$. If f_{1}, \ldots, f_{n} define a $B_{\mathcal{I}}$-system of degree $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, then

$$
E_{\bullet}\left(\mathcal{I} ; d_{1}, \ldots, d_{n}\right)+p_{1} \cdots p_{k} \sum_{\delta=0}^{n-k}\left((-1)^{\delta} \mathcal{D}_{n-k-\delta} \mathcal{P}_{\delta}\right)=d_{1} d_{2} \cdots d_{n}
$$

where $\mathcal{D}_{n-k-\delta}$ is the degree $n-k-\delta$ elementary symmetric function evaluated at d_{1}, \ldots, d_{n} and P_{δ} is the degree δ complete homogeneous symmetric function evaluated at p_{1}, \ldots, p_{k}.

The paper is structured as follows. We consider the case when \mathcal{I} is a monomial ideal, and show excess numbers equal mixed volumes of polytopes (Lemma 7). By further restricting to the case when the ideal \mathcal{I} defines a complete intersection that is also a linear space (though not necessarily reduced), we do a mixed volume computation (Lemma 10) to get an explicit formula for excess numbers. In the final section, we present our algorithms that take advantage of the first sections results.

https://daneshyari.com/en/article/403071

Download Persian Version:

https://daneshyari.com/article/403071

Daneshyari.com

[^0]: E-mail address: jo.ro@berkeley.edu.
 http://dx.doi.org/10.1016/j.jsc.2014.09.034
 0747-7171/© 2014 Elsevier Ltd. All rights reserved.

