
From source code to runtime behaviour: Software metrics help to select
the computer architecture

Frank Eichinger a,*, David Kramer b, Klemens Böhm a, Wolfgang Karl b

a Institute for Programme Structures and Data Organisation (IPD), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
b Institute for Computer Science and Engineering (ITEC), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany

a r t i c l e i n f o

Article history:
Available online 20 November 2009

Keywords:
Computer architecture
Data mining
Performance prediction
Source-code metrics
Control-flow graphs

a b s t r a c t

The decision which hardware platform to use for a certain application is an important problem in com-
puter architecture. This paper reports on a study where a data-mining approach is used for this decision.
It relies purely on source-code characteristics, to avoid potentially expensive programme executions. One
challenge in this context is that one cannot infer how often functions that are part of the application are
typically executed. The main insight of this study is twofold: (a) Source-code characteristics are sufficient
nevertheless. (b) Linking individual functions with the runtime behaviour of the programme as a whole
yields good predictions. In other words, while individual data objects from the training set may be quite
inaccurate, the resulting model is not.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The question which computer architecture is best suited for a
certain application is of outstanding importance in the computer
industry. With the continuous refining of computer architectures,
this problem becomes even more challenging. Think of the high de-
gree and various forms of parallelism (multicores), heterogeneity
due to application-specific accelerators, interconnection technol-
ogy on the chip, or the memory hierarchy. The design space is huge
and leads to a broad variety of processor architectures. It is not at
all obvious which architecture is best suited for a specific applica-
tion. For example, due to the branch-prediction unit,an application
with predictable branches benefits from a long pipeline, while a
shorter pipeline is better for unpredictable branch behaviour. The
question which architecture yields the best performance is partic-
ularly important for high-performance computing where an
expensive system is purchased for a few or even only one
application.

Traditional approaches use experimental executions, simula-
tions or analytical models to identify the best computer architec-
ture for a given application. For instance, when a computing
centre plans to procure a new cluster for a specific application,
one way to do so is to compare the runtime behaviour of this appli-
cation on different platforms. This obviously is time-consuming
and expensive, and the platforms in question must be available

in the first place. Similar arguments apply to state-of-the-art sim-
ulation approaches: In-depth simulation is time-consuming, in
particular with machine models that are sophisticated. Finally,
due to the increasing complexity of computer systems, establishing
analytical models of the computer architectures in question is ex-
tremely hard. This may lead to a relatively poor reliability of these
models, compared to experimental executions and simulations. In
consequence, techniques are sought which help to decide between
several platforms for a specific application. Ideally, such techniques
should not require any execution or simulation and should be
based on an analysis of the application in question. Some ap-
proaches exist which can make a decision between several plat-
forms [1,2]. They rely on the assumption that similar programme
perform alike when executed on the same machine. However, in
addition to measures deduced from the source code, these ap-
proaches make use of runtime-related characteristics, such as
branch probabilities or instruction counts. To generate these char-
acteristics, simulations or programme runs on real hardware are
necessary.

This article reports on the results of a study that investigates an-
other method to determine the best computer architecture for a gi-
ven application. The method likewise assumes that similar
applications have similar execution behaviour. But in contrast to
the previous work, we have consciously decided not to take any
runtime-related information of the application in question into ac-
count. In this current study we characterise the application entirely
by means of measures gained from the source code. In other words,
we hypothesise that there is a strong correlation between pro-
gramme properties encoded in the source code and the execution

0950-7051/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.knosys.2009.11.014

* Corresponding author. Tel.: +49 721 608 7336; fax: +49 721 608 7343.
E-mail addresses: eichinger@kit.edu (F. Eichinger), kramer@kit.edu (D. Kramer),

klemens.boehm@kit.edu (K. Böhm), karl@kit.edu (W. Karl).

Knowledge-Based Systems 23 (2010) 343–349

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys

http://dx.doi.org/10.1016/j.knosys.2009.11.014
mailto:eichinger@kit.edu
mailto:kramer@kit.edu
mailto:klemens.boehm@kit.edu
mailto:karl@kit.edu
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


behaviour, and that this correlation can be exploited. This hypoth-
esis may appear to be unsettling – taking only source-code charac-
teristics into account obviously is much less informative than
runtime behaviour! In particular, it is difficult to impossible to in-
fer how often a certain function is typically executed. Another issue
is that source-code metrics, i.e., existing measures that quantify
characteristics of the source code, typically are defined on the func-
tion level rather than on the level of entire programme, while we
are interested in predictions for programme as a whole. Having
said this, the method examined here is a data-mining approach
with the following distinctive feature: It links individual functions
with the runtime behaviour of the programme as a whole. Even
though this approach clearly is simplistic, i.e., the characterisation
of individual functions may be very inaccurate, it yields a predic-
tion accuracy for entire programme which is surprisingly high. In
retrospect, our explanation is as follows: since applications typi-
cally consist of a large number of functions, there is a lot of training
data which, on average, compensates for that simplification. That
is, we provide evidence that source-code characteristics alone are
indeed helpful to predict a good computer architecture. More spe-
cifically, our contributions are as follows:

1.1. Software metrics

The software-engineering community has proposed a number
of software metrics in order to represent source-code characteris-
tics and properties. Originally, these metrics have been cast as
quality measures rather than as performance indicators. Prelimin-
ary investigations of ours have revealed that measures based on
the control flow of functions are particularly promising to predict
runtime behaviour. Consequently, we define and derive a number
of metrics, such as graph invariants, based on the control-flow
graphs (CFGs) [3] of the functions. We use these metrics in addition
to more common ones.

1.2. Classification framework

We propose a classification setting for our specific context and
evaluate it. This setting is not obvious: While most metrics are
available at the function level, we want to choose the best architec-
ture for a programme as a whole. Instead of potentially lossy
aggregation approaches, we propose a framework where we first
learn at the function level before deploying classifier-fusion tech-
niques to come up with predictions at the programme level.

1.3. Evaluation

Our case study features an evaluation using five systems from
the online database of the SPEC CPU 2000 and 2006 benchmark
suites. The results are that, for ‘relatively similar’ computer archi-
tectures to choose from, and with the runtime behaviour of only
few programme used as training data, our approach achieves an
average prediction accuracy of 78% when choosing between two
systems.

1.4. Correlation of software metrics and runtime behaviour

Our main concern, from a ‘research’ perspective, has been to
confirm (and to exploit) the relationship between source-code
properties and runtime behaviour, on different platforms. Besides
the fact that the approach investigated here does indeed yield a
statement regarding the computer architecture best suited, our
evaluation shows that the correlation between source-code prop-
erties and runtime behaviour is remarkably strong.

Paper outline: Section 2 presents related work, Section 3 de-
scribes the process of acquiring software metrics, before we de-

scribe the data-mining process in Section 4. Section 5 presents
our results, which are discussed in Section 6. Section 7 concludes.

2. Related work

In the past, various approaches to predict the runtime or the
runtime behaviour of given applications have been proposed. New-
er approaches propose the use of machine-learning approaches for
this prediction.

In [4,5] the authors use multilayer neural networks to predict
the performance of the multigrid solver SMG 2000 on a Blue-
Gene/L cluster. The parameter space includes the cluster configura-
tion as well as the size of the grid used. The training set used
consists of performance results on an actual platform using a col-
lection of random points from the parameter space. In contrast
to our approach, these approaches can only be used to predict
the performance of a parametrised application on a cluster with
different configurations. In addition, they require time-consuming
training-data generation.

Another possible use of neural networks is described in [6].
Here, _Ipek et al. use neural networks to predict the performance
of points in the design space. Neural networks are used to approx-
imate the design space and to create a model of it. The model built
predicts the performance of points with high accuracy and has
been applied to memory hierarchy and chip-multiprocessor design
spaces.

To ease the generation of analytical models of complex
high-performance systems, Kühnemann et al. have developed a
compiler tool for automated runtime prediction of parallel MPI
programme [7]. The tool analyses the source code of MPI
programme to create an appropriate runtime-function model for
the communication overhead and for the computation. Properties
of the underlying machine are needed for proper prediction of
the computation effort.

Another method for performance prediction is [2] from Joshi
et al. They use inherent programme characteristics to measure
the similarity between programme. Instead of using microarchitec-
ture-dependent measures for characterisation, such as cycles per
instruction, cache-miss rate or runtimes, they use microarchitec-
ture-independent ones. These measures include the instruction
mix, the size of the working set and branch probabilities. To gener-
ate the measures, either simulation or execution of the application
is necessary. Based on [2], the authors exploit the similarity be-
tween programme for performance prediction of applications in
the SPEC CPU 2000 benchmark suite [1]. They use microarchitec-
ture-independent characteristics and performance numbers from
an application to build a so-called benchmark space. To predict
the performance of an application, the developer has to compute
a point in the benchmark space using the same characteristics.
Comparing our approach to [1] reveals that both approaches can
predict the runtime behaviour of an application in question on gi-
ven platforms and have advantages and disadvantages. [1] uses
runtime-related microarchitecture-independent characteristics in
the prediction process. The advantage is that predictions are likely
to be more precise. A drawback is that the execution of the appli-
cation on an existing platform or a detailed simulation is necessary.
Saveedra and Smith [8] use a similar approach as proposed in [1],
but they use programme and machine characteristics to estimate
the performance of a given Fortran programme on an arbitrary ma-
chine. A drawback of all these approaches is the usage of architec-
ture-dependent characteristics which are time-consuming to
create. Our approach in turn does not require such characteristics.

Finally, [9] studies the same problem as this current paper, but
with a different approach based on graph mining and control-flow
graphs. The technique described here yields better results.

344 F. Eichinger et al. / Knowledge-Based Systems 23 (2010) 343–349



Download English Version:

https://daneshyari.com/en/article/403086

Download Persian Version:

https://daneshyari.com/article/403086

Daneshyari.com

https://daneshyari.com/en/article/403086
https://daneshyari.com/article/403086
https://daneshyari.com

