Retinal stimulation strategies to restore vision: Fundamentals and systems

Lan Yue,*, James D. Weiland, Botond Roska, Mark S. Humayun

Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
USC Eye Institute, Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
Department of Ophthalmology, University of Basel, Basel, Switzerland

ABSTRACT

Retinal degeneration, a leading cause of blindness worldwide, is primarily characterized by the dysfunctional/degenerated photoreceptors that impair the ability of the retina to detect light. Our group and others have shown that bioelectronic retinal implants restore useful visual input to those who have been blind for decades. This unprecedented approach of restoring sight demonstrates that patients can adapt to new visual input, and thereby opens up opportunities to not only improve this technology but also develop alternative retinal stimulation approaches. These future improvements or new technologies could have the potential of selectively stimulating specific cell classes in the inner retina, leading to improved visual resolution and color vision. In this review we will detail the progress of bioelectronic retinal implants and future devices in this genre as well as discuss other technologies such as optogenetics, chemical photoswitches, and ultrasound stimulation. We will discuss the principles, biological aspects, technology development, current status, clinical outcomes/prospects, and challenges for each approach. The review will cover functional imaging documented cortical responses to retinal stimulation in blind patients.

© 2016 Elsevier Ltd. All rights reserved.

Contents

1. Introduction ... 22
 1.1. Retinal degenerative diseases .. 22
 1.2. Treatment options and opportunities for retinal stimulation .. 23
2. Electrical retinal stimulation and system ... 23
 2.1. Fundamentals of electrical retinal stimulation .. 23
 2.2. Proof-of-concept studies: leap from phosphenes to prosthetic vision ... 25
 2.3. Retinal prosthetic systems and clinical implications .. 25
 2.3.1. Epiretinal prosthesis .. 25
 2.3.2. Subretinal prostheses .. 28
 2.3.3. Suprachoroidal prostheses .. 30
2.4. Challenges and system approaches .. 31
 2.4.1. Visual acuity .. 32
 2.4.2. Visual field .. 33
 2.4.3. Stimulation selectivity and efficiency ... 34
 2.4.4. Eye movement and intraocular camera .. 35

* Corresponding author.
** Corresponding author.
E-mail address: lyue@usc.edu (L. Yue).

1 Percentage of work contributed by each author in the production of the manuscript is as follows: Lan Yue: 65%, James D. Weiland: 10%, Botond Roska: 10%, Mark S. Humayun: 15%.

http://dx.doi.org/10.1016/j.preteyeres.2016.05.002
1350-9462/© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Retinal degenerative diseases

Retina is a stratified light sensitive tissue that lines the back of the eye. It is ~0.5 mm in thickness and the retinal neural network consists of several layers of cells bodies and their neural processes of dendrites and axons, as illustrated in Fig. 1A. The Retinal Pigment Epithelium (RPE) cell layer, lying adjacent to the neural retina, is involved in recycling the visual pigments and maintaining the health of photoreceptors, the light sensor in healthy retina. Visual signals, initiated at the photoreceptors, sequentially travel through the bipolar cells and ganglion cells and propagate to the higher visual centers in the brain via the optic nerves (axons of the ganglion cells). Signals also receive lateral modulation from horizontal cells and amacrine cells, as part of the neural processing in inner retina. As shown in Fig. 1A, cell distribution profiles are very different in central vs. peripheral retina. Cone photoreceptors are densely packed in the macula while rod photoreceptors predominate in the peripheral region. Retinal signaling in the macular region is analogous to “private line” transmission from individual cones whereas a high level of convergence occurs in peripheral retina.

Retinal degeneration involving progressive deterioration and loss of function of photoreceptors is a major cause of permanent vision loss (Busskamp et al., 2010; Curcio et al., 2000). Age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are the two most prevalent forms of retinal degenerative diseases. Epidemiologic studies show that the onset of AMD occurs predominantly in the elderly while RP afflicts children and young adults (Wong et al., 2011). Together, they account for millions of cases of blindness and visual impairment worldwide. Fig. 1B shows

Fig. 1. Retina and retinal degenerative diseases. (A) Schematic representation of the stratified structure of neural retina. Pink-shaded area represents the macular region. (B) Effects of retinal degeneration on visual field. Left: Visual field of a normally sighted subject; Middle: Central vision loss in macular degeneration. Right: Peripheral vision loss in retinitis pigmentosa.
دانلود مقاله

http://daneshyari.com/article/4031889

امکان دانلود نسخه تمام متن مقالات انگلیسی ✓
امکان دانلود نسخه ترجمه شده مقالات ✓
پذیرش سفارش ترجمه تخصصی ✓
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله ✓
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب ✓
دانلود فوری مقاله پس از پرداخت آنلاین ✓
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات ✓