

Available online at www.sciencedirect.com

Progress in
RETINAL AND EYE RESEARCH

Progress in Retinal and Eye Research 26 (2007) 398-436

www.elsevier.com/locate/prer

Contact lens-induced changes in the anterior eye as observed *in vivo* with the confocal microscope

Nathan Efron*

Institute of Health and Biomedical Innovation, and School of Optometry, Queensland University of Technology, Corner Musk Avenue and Blamey Street, Kelvin Grove, Queensland 4059, Australia

Abstract

The availability of the confocal microscope over the past decade has allowed clinicians and researchers to refine their understanding of the physiological and pathological basis of the ocular response to contact lens wear, and to discover previously unknown phenomena. Mucin balls, which form in the tear layer in patients wearing silicone hydrogel lenses, can penetrate the full thickness of the epithelium, leading to activation of keratocytes in the underlying anterior stroma. Epithelial cell size increases in response to all forms of lens wear, with lenses of higher oxygen transmissibility (Dk/t) interfering least with the normal process of epithelial desquamation. A higher density of Langerhans' cells is observed in the layer of the sub-basal nerve plexus among contact lens wearers, suggesting that contact lens wear may be altering the immune status of the cornea. Dark lines and folds are observed in the oedematous cornea in response to contact lens wear. Mechanical stimulation of the corneal surface, due to the physical presence of a contact lens, and the consequent release of inflammatory mediators, is the likely cause of reduced keratocyte density associated with lens wear. Highly reflective stromal 'microdot deposits' are observed throughout the entire stroma in higher numbers in lens wearers. 'Blebs' in the endothelium have a bright centre surrounded by a dark annular shadow; this appearance is explained with the aid of an optical model. The confocal microscope has considerable clinical utility in diagnosing *Acanthamoeba* and fungal keratitis. At the limbus, contact lenses can induce structural changes such as increases in basal epithelial cell size. An increased number of rolling leucocytes is observed in limbal vessels in response to low Dk/t lenses. It is concluded that the confocal microscope has considerable utility in contact lens research and practice. © 2007 Elsevier Ltd. All rights reserved.

Keywords: Confocal microscope; Contact lens; Cornea; Keratocytes; Langerhans' cells

Contents

1.	Introdu	ction	399
2.	Confocal microscopy		
	2.1. H	Iistorical development	400
	2.2. C	Current instruments	400
	2.	.2.1. Slit-scanning confocal microscope	400
	2.	.2.2. Laser-scanning confocal microscope	401
	2.3. Pa	atient examination	401
	2.	.3.1. Slit-scanning confocal microscope	402
	2.	.3.2. Laser-scanning confocal microscope	402
3.	The nor	rmal cornea as viewed with the confocal microscope	402

Abbreviations: CM, confocal microscopy; Dk/t, oxygen transmissibility; EGF, epidermal growth factor; HGF, hepatocyte growth factor; IL-8, interleukin-8; KD, keratocyte density; LASIK, myopic laser *in situ* keratomileusis; LSCM, laser scanning confocal microscopy; SLB, slit lamp biomicroscopy; SSCM, slit scanning confocal microscopy; TSCM, tandem scanning confocal microscopy

*Tel.: +61731386401; fax: +61733196974.

E-mail address: n.efron@qut.edu.au.

^{1350-9462/\$ -} see front matter 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.preteyeres.2007.03.003

	3.1.	Epithelium	402
	3.2.	Sub-basal nerve plexus	404
	3.3.	Bowman's layer	405
	3.4.	Stroma	406
	3.5.	Descemet's membrane	408
	3.6.	Endothelium	408
4.	The 1	normal limbus and conjunctiva as viewed with the confocal microscope	409
5.	The o	cornea during contact lens wear	410
	5.1.	Mucin balls	410
		5.1.1. Slit-lamp biomicroscopy	410
		5.1.2. Confocal microscopy.	411
	5.2	Enithelial cell morphology	412
	5.3	Corneal nerves	412
	5.4	Corneal oedema	412
		5.4.1 Slit-lamp biomicroscopy	413
		54.2 Confocal microscopy	413
	55	Stromal thinning and keratocyte loss	415
	5.5.	5.5.1 Clinical evidence of stromal thinning	415
		5.5.2 Observations of keratocyte loss	417
		5.5.3. Actiology of lensinduced keratocyte loss	419
	56	Stromal microdats	420
	5.0.	5.6.1 Silt lamp biomicroscopy	420
		5.6.2 Confocal microscopy	420
	57	Endothelial blebs	422
	5.7.	5.7.1 Silt lamp biomicroscopy	422
		5.7.1. Sht tamp bioincroscopy	423
	58	Endothelial cell mornhology	424
	5.0.	5.8.1 Sneeular microscony	424
		5.8.2 Confocal microscopy	425
	59	Keratitis	425
	5.7.	591 Bacterial keratitis	425
		592 Acanthamoeba keratitis	426
		5.9.2. Fungal keratitis	427
6	The l	limbus during contact lens wear	428
0.	6.1	Slit lamp biomicroscopy	428
	6.2	Confocal microscopy	428
7	Sumi	mary and conclusions	420
<i>'</i> .	7 1	Examining the contact lens wearing eve with the confocal microscope	420
	7.1.	Confocal microscopy in contact lens practice	430
8	7.2. Futu	re directions	430
0.	Ackr	novledgements	
	Refe	10 wildgements	/31
	Kelel		431

1. Introduction

Complications of contact lens wear can arise as a result of mechanical insult, hypoxic or hypercapnic stress, immunological reactions to lens deposits or solutions, toxic reactions to solutions, or infection, and can be exacerbated by local ocular problems (e.g. dry eye) or general systemic disorders (e.g. diabetes) (Efron, 2004a). Contact lens practitioners rely upon the optical slit lamp biomicroscope (SLB) for the critical task of examining the anterior ocular structures before, during and after contact lens wear. This instrument is extremely flexible in that it offers a stereoscopic view over a range of magnifications. The cornea can be illuminated with a slit of light that can be tilted and rotated, varied in terms of brightness, width and height, and interposed with coloured and polarizing filters.

A fundamental limitation of the SLB is that the highest practicable magnification possible is around $\times 40$, with a lateral resolution of 30 µm. In certain circumstances, this places a considerable constraint upon clinical decisionmaking. For example, it is not possible to identify the precise nature of infiltrates in a case of keratitis. The relatively new technique of confocal microscopy (CM) offers clinicians the opportunity to examine the living human cornea at a magnification of around $\times 500$ to $\times 700$. This technique, therefore, enables examination of tissue structures at a cellular level, and in relation to the example given above, extraneous matter such as infectious agents can be identified. Download English Version:

https://daneshyari.com/en/article/4032201

Download Persian Version:

https://daneshyari.com/article/4032201

Daneshyari.com