
On-line monitoring of plan execution: A distributed approach

Roberto Micalizio *, Pietro Torasso

Università di Torino, Dipartimento di Informatica, Italy

Received 10 October 2006; accepted 16 November 2006
Available online 8 December 2006

Abstract

The paper introduces and formalizes a distributed approach for the model-based monitoring of the execution of a plan, where con-
current actions are carried on by a team of mobile robots in a partially observable environment. Each robot is monitored on-line by an
agent that has the task of tracking all the possible evolutions both under nominal and faulty behavior of the robot and to estimate the
belief state at each time instant. The strategy for deriving local solutions which are globally consistent is formalized. The distributed mon-
itoring provides on-line feedback to a system supervisor which has to decide whether building a new plan as a consequence of actions
failure. The feasibility of the approach and the gain in the performance are shown by comparing experimental results of the proposed
approach with a centralized one.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Distributed on-line monitoring; Model-based reasoning; Plan execution monitoring; Multi-agent systems

1. Introduction

In the recent years, growing efforts have been spent for
providing multi-agent systems with a closed loop of control

feedback in order to complete the given task despite some-
thing has gone wrong (see e.g., [5]). In general these efforts
advocate the presence of a system supervisor which synthe-
sizes an initial plan, and possibly adapts on-line such a plan
when unexpected events occur. Within the control loop a
critical role is played by the activities of monitoring and
diagnosis. In fact, monitoring on-line the progress of the
task allows the detection of discrepancies between the
expected nominal behavior of the system and the observed
one. While the diagnosis is essential for singling out the
root causes of the failure of the task carried on by the
agent.

Monitoring the activity of software agents as well as
robotic ones is a challenging problem, in particular when
the actions of the plan are performed by a team of

concurrent executors in a complex and dynamic environ-
ment where only some events are observable and the exec-
utors may fail.

Informally, the task of monitoring consists in tracking
the evolutions of the system under consideration (i.e.,
maintaining a history of system states as accurate as possi-
ble) and detecting anomalies whenever they occur. In this
paper, we have to monitor a plan with concurrent actions
carried on by a team of plan executors. We will assume that
plan executors are robots, however they are domain depen-
dent, for example in the Air Traffic Control domain (see
[9]) plan executors are the airplanes which execute their
own flight plan.

As discussed in [1], the successful execution of a plan is
threatened by unexpected events which may cause the fail-
ure of some actions (the anomalies the monitoring has to
detect). In our approach, plan threats are faults in robot
functionalities or robot competitions which may arise when
a number of robots request the same resource
simultaneously.

A planner coping with any particular class of domain
dependent threats has a choice of either: (1) attempting
to prevent threats, or (2) attempting to deal with threats

0950-7051/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.knosys.2006.11.010

* Corresponding author.
E-mail addresses: micalizio@di.unito.it (R. Micalizio), torasso@di.

unito.it (P. Torasso).

www.elsevier.com/locate/knosys

Knowledge-Based Systems 20 (2007) 134–142

mailto:micalizio@di.unito.it
mailto:torasso@di. unito.it
mailto:torasso@di. unito.it


individually as they arise [1]. Some approaches to plan
monitoring and diagnosis (see e.g., [11]) consider just atom-
ic actions and require that the monitored plan must satisfy
a concurrency requirement which prevents the occurrence of
robots competition for accessing the resources.

We present a system supervisor able to deal with threats
when they arise, in this way, given a high-level goal, a plan-
ner may synthesize a plan P without the (heavy) request
that all the possible threats are prevented. We do not
require that the actions are atomic and, as suggested in
[1], each of them is associated with a nominal duration:
when the actual duration of an action exceeds its nominal
time the action is considered failed. Moreover, the actions
may require some resources that typically can satisfy just a
limited number of requests per time instant, thus the execu-
tion of the plan must, in general, satisfy a set of resource

constraints.
While a centralized approach to the monitoring of the

execution of plan P is discussed in [6,7], the present paper
presents a distributed approach to the problem. In particu-
lar, the paper formalizes an approach where the plan is dis-
tributed among several plan executors (robots) and each
executors is on-line monitored by an agent. In order to
establish a control loop, our monitoring framework pro-
vides the supervisor not only with the status of the plan
but also with the (possibly not nominal) outcome of the
actions. As we will discuss, the actions outcome is a useful
piece of information exploited by the supervisor for taking
a decision on whether building a new plan in response to a
failure. In general, however, the supervisor would need also
to know the root causes of a failure (i.e., a failure explana-
tion). For space limits, in this paper we do not discuss the
diagnostic component responsible for fault identification or
for singling out specific threats: a possible solution for this
problem is reported in [6].

The paper is organized as follows, in Section 2 basic
concepts about the distributed plan monitoring are intro-
duced, in Section 3 a formalization of a multi-robot envi-
ronment is presented, while in Section 4 the distributed
approach to the monitoring is discussed. In Section 5, we
present some experimental results we have gathered by
using the simulated RoboCare environment (see [4]), and
compare the centralized approach (described in [7]) vs.
the decentralized one.

2. Characterizing the problem

The problem we are interested in concerns the specifica-
tion of a closed loop of control feedback established
through the presence of monitoring and diagnosis services.
In such a way the supervisor has the capabilities for look-
ing after the progress of the plan and for dealing with unex-
pected threats. In [6] the services of monitoring and
diagnosis are performed in a centralized way by the plan
supervisor itself, which collects all the available system
observations and keeps track of the progress of the actions
the robots are performing.

In the present paper, we focus our attention on the on-
line monitoring service and we describe how the monitor-
ing of a given plan P can be distributed among a team
Ags of software agents. The reason why we propose a dis-
tributed approach stems by the observation that a central-
ized one may result computationally expensive when the
number of robots grows. In fact, a centralized approach
has to build a global representation of the system status
which takes into account all the possible combinations of
the robots states. However, given partial observability of
the environment, this representation may contain a huge
number of alternatives and therefore it could become
unmanageable.

We thus propose to decompose the task of monitoring
the robot team T into a set of sub-problems; each sub-
problem is assigned to an agent i 2 Ags and consists in
monitoring just the robot rbi. The only available observa-
tions for agent i are: messages sent by a set of sensors, dis-
tributed in the environment, in response to a detected event
concerning rbi, and messages volunteered by rbi itself about
its status (e.g., current position). It is worth noting that in
most cases the observations are not sufficient for precisely
inferring the status of each robot.

The partitioning described above does not guarantee
that the sub-problems are completely independent of one
another. In fact, since robot interactions may arise, the
actual progress of the action carried on by rbi depends
on the rbi’s health status as well as on the occurrence of
robot interactions which involve rbi. Therefore agent i

needs to cooperate with other agents in order to maintain
a globally consistent representation of the status of the
robot rbi.

Effective cooperation among agents is reached by adopt-
ing two strategies which result to be useful in the context of
the distributed problem solving ([3]). First of all, we reduce
as far as possible the number of cooperating agents, in par-
ticular, each agent i 2 Ags determines on-line (i.e., at each
time instant) the subset of other agents (denoted as depen-
dency set) it has to cooperate with by taking into consider-
ation the actions currently executed by the team of robots.
Clearly, since the actions change over time also the rela-
tions among the software agents need to change.

The second strategy concerns what sort of data the
agents exchange for achieving cooperation. Instead of the
rough data that each agent directly receives from the sen-
sors and the robot, the agents exchange partial results
which will be subsequently refined by integrating them with
the partial results inferred by all the other agents in the
same dependency set of agent i.

Whenever an agent detects the failure of an action it
informs the supervisor by means of the outcome of that
action. The outcome of a failed action represents a first
kind of data the supervisor can rely on in order to take
a decision for overcoming that particular failure. Of
course, in case the supervisor revises the original plan P,
the new plan needs to be redistributed among the software
agents.

R. Micalizio, P. Torasso / Knowledge-Based Systems 20 (2007) 134–142 135



Download	English	Version:

https://daneshyari.com/en/article/403226

Download	Persian	Version:

https://daneshyari.com/article/403226

Daneshyari.com

https://daneshyari.com/en/article/403226
https://daneshyari.com/article/403226
https://daneshyari.com/

