
Using AI and semantic web technologies to attack process complexity
in open systems

Simon Thompson *, Nick Giles, Yang Li, Hamid Gharib, Thuc Duong Nguyen

BT Research and Venturing, Adastral Park, Ipswich, United Kingdom

Received 9 October 2006; accepted 16 November 2006
Available online 11 December 2006

Abstract

Recently many vendors and groups have advocated using BPEL and WS-BPEL as a workflow language to encapsulate business logic.
While encapsulating workflow and process logic in one place is a sensible architectural decision, the implementation of complex work-
flows suffers from the same problems that made managing and maintaining hierarchical procedural programs difficult. BPEL lacks con-
structs for logical modularity such as the requirements construct from the STL [STL 2003, Introduction to the STL. Available from:
<http://www.sgi.com/tech/stl/stl_introduction.html>.] or the ability to adapt constructs like pure abstract classes for the same purpose.
We describe a system that uses semantic web and agent concepts to implement an abstraction layer for BPEL based on the notion of
Goals and service typing. AI planning was used to enable process engineers to create and validate systems that used services and goals
as first class concepts and compiled processes at run time for execution.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Semantic Web; Business Processes; Agents; Planning; Abstraction; Web services; BPEL; Workflow; Tools

1. Introduction

When process flows move beyond describing the interac-
tions required to buy a book they can become very com-
plex. For example, the job allocation workflow
implemented in BT on the CSS system in COBOL requires
two sheets of A0 paper to be plotted with readable fonts.
While it is possible to write a job allocation process as
receive task fi choose resource fi allocate task real world
issues such as record maintenance, audit, co-ordination,
authentication, health and safety, reporting, billing,
resource management, logistics and cash flow must be
included to make the process operational. The move of
business processes into an open environment of dynamic
virtual enterprises has added another problem and another
source of complexity.

Software Engineering researchers attacked the problem
of complexity of process flow by developing abstractions
that allowed a degree of agility and reuse to be achieved
by modularity and encapsulation of data and function.
Classes as an abstraction in object orientated programming
provide both abstract data types and polymorphism for use
cases such as the abstract factory pattern or template based
development.

We have used the concepts of service mark-up and goal
orientation that have been proposed by the Semantic Web
and Autonomous Agent communities to implement an
approach to dealing with process complexity (see Section
2) This paper describes our approach in detail with an
example (Section 3) and reports on analytic tools (Section
4) and development method (Section 5) which are required
to support the use of this technology in the context of
developing process orientated systems. In particular our
tools are designed to help engineers develop and test
dynamic, open systems of services, possibly provided by
Autonomous Agents.

0950-7051/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.knosys.2006.11.016

* Corresponding author.
E-mail address: simon.2.thompson@bt.com (S. Thompson).

www.elsevier.com/locate/knosys

Knowledge-Based Systems 20 (2007) 152–159

http://www.sgi.com/tech/stl/stl_introduction.html
mailto:simon.2.thompson@bt.com


2. Previous work

BPEL is Turing Complete and is therefore an acceptable
machine readable process specification. It is highly portable
and widely implemented so it is an appropriate target lan-
guage for our system.

The non-functional properties of the three types of
future computing systems (Grid, Web Services and Ubiqui-
tous Computing) that are currently fashionable are:

• Scale: In all three visions very large numbers of compo-
nents work together over extended lifecycles.

• Openness: Components come and go dynamically, pro-
grammers have only expectations of runtime availability
of functionality.

• Low cost: The hype and excitement surrounding all
three visions is driven by an expectation that costs for
using these infrastructures will be very low.

These non-functional properties drive the following
requirements for the software development systems that
are to be used to implement functionality on these three
infrastructures.

• They must at least help humans find and select relevant
services.

• They must be able to utilize the services that are avail-
able to achieve the human’s goals.

• They must provide a high degree of automation.

Goal directed agents offer a technological response to
these requirements. The canonical style of goal directed
agent is the BDI agent, but it is important to stress that
the canonical implementation of the BDI architecture,
PRS, and PRS style agents implemented with Agent-
speak and its derivatives are only one way to meet the
requirements above. PRS based agents are implemented
using a planner that selects scripts (plans) from a data-
base based on the current state of the world and the cur-
rent goals of the Agent. The plan database is created by
the Agent developer at compile time. The Agent is therefore
unable to take advantage of action effects/services that are
unknown to the programmer at compile time and enter its
world at run time, because by definition none of the scripts
in its plan database feature these effects.

In the past many Agent systems like Decafe [7] and
Zeus [5] have featured constructive planners which pro-
vide varying degrees of flexibility of behaviour in the
face of dynamic sets of service actions. The problem
that we have encountered in developing agents with
constructive planners that the development of systems
that utilize this behaviour is difficult (in the sense that
PhDs find it hard), unpredictable (in the sense that
committing to deadlines is difficult) and unreliable (in
the sense that the system does not behave in the desired
fashion). Gaia and other similar methodologies do not
address agent application deployment although tools

like JADE [1] and Retsina [13] do provide mechanisms
to distribute and launch agents. The work that we pres-
ent here integrates a methodology for agent analysis
and development with a development, testing and
deployment cycle.

2.1. Analytics

Process style mark-up has been used in HTN planners
such as SHOP-2 [11], and in a variety of other settings,
but we are unaware of any tools that provide analysis to
engineers during the creation of system with ad-hoc coali-
tion structures derived by an agent’s PSM at run time.
The GIPO tool is closest [10] but this is focused on plan-
ning primitives and the HTN abstraction only. The numer-
ous algorithms that have been proposed to enable the
problem solving agents operation (coalition formation for
example [3], planning for example [4], coalition structure
discovery for example [6]) indicate that this is a significant
area of investigation, so it is surprising that so little atten-
tion has been given to designing and implementing tool
support for this task.

2.2. Agent development or service composition?

Extending the discussion above we can frame the issue
of dealing with the process complexity abstraction issue
as that of developing technology for provisioning and uti-
lizing (engineering with) knowledge for a situated agent in
a dynamic environment. There is an extensive literature on
Semantic Web service composition [9] which describes
related technology.

We draw two distinctions:

1. We expect the agent utilizing the planning knowledge
that it is gleaning from its domain to act run time, and

to base its compositions on the state of its beliefs about

the environment whereas service composition tools, typi-
cally, are used to generate new meta-services at compile
time, which are then registered in directories as new
capabilities for direct use.

2. We expect the agent to act autonomously in the second
sense defined by Luck et al. [8]. Goal of the agent are
the result of an interaction of the required outcome of
a request and the context that the request is made in
terms of the availability of the services and the condi-
tions in the environment.

For example, given a scenario for a portal to provide
a service for the selection of telecom services based on
the features that the customer desires. New products
are added, inventory changes, and the customer’s cir-
cumstances change. The agent managing the portal uses
its planner to provide best effort services based on the
companies ability to procure and fulfil orders for the
equipment and to install it in the required time
windows.

S. Thompson et al. / Knowledge-Based Systems 20 (2007) 152–159 153



Download English Version:

https://daneshyari.com/en/article/403228

Download Persian Version:

https://daneshyari.com/article/403228

Daneshyari.com

https://daneshyari.com/en/article/403228
https://daneshyari.com/article/403228
https://daneshyari.com

