

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/survophthal

Major review

Iron, zinc, and copper in retinal physiology and disease

Marta Ugarte, DPhil, FRCOphth a,* , Neville N. Osborne, PhD b,c , Laurence A. Brown, PhD c , Paul N. Bishop, FRCOphth, PhD a

ARTICLE INFO

Article history:
Received 27 January 2012
Received in revised form
9 December 2012
Accepted 11 December 2012

Keywords:
iron
zinc
copper
retina
metal homeostasis interactions
trace metal deficiency and overload
trace metal toxicity
age-related macular degeneration
iron chelators
zinc supplements

ABSTRACT

The essential trace metals iron, zinc, and copper play important roles both in retinal physiology and disease. They are involved in various retinal functions such as phototransduction, the visual cycle, and the process of neurotransmission, being tightly bound to proteins and other molecules to regulate their structure and/or function or as unbound free metal ions. Elevated levels of "free" or loosely bound metal ions can exert toxic effects, and in order to maintain homeostatic levels to protect retinal cells from their toxicity, appropriate mechanisms exist such as metal transporters, chaperones, and the presence of certain storage molecules that tightly bind metals to form nontoxic products. The pathways to maintain homeostatic levels of metals are closely interlinked, with various metabolic pathways directly and/or indirectly affecting their concentrations, compartmentalization, and oxidation/reduction states. Retinal deficiency or excess of these metals can result from systemic depletion and/or overload or from mutations in genes involved in maintaining retinal metal homeostasis, and this is associated with retinal dysfunction and pathology. Iron accumulation in the retina, a characteristic of aging, may be involved in the pathogenesis of retinal diseases such as age-related macular degeneration (AMD). Zinc deficiency is associated with poor dark adaptation. Zinc levels in the human retina and RPE decrease with age in AMD. Copper deficiency is associated with optic neuropathy, but retinal function is maintained. The changes in iron and zinc homeostasis in AMD have led to the speculation that iron chelation and/or zinc supplements may help in its treatment. © 2013 Elsevier Inc. All rights reserved.

1. Introduction

Iron, zinc, and copper are essential trace elements playing key roles in retinal structure and physiology. ^{117,144,145,151,} ^{230,232,244,322,331,347,352,362} Inherited disorders of their metabolism are associated with retinal dysfunction and significant

visual loss. Iron accumulation in the retina of patients with aceruloplasminaemia, ^{88,383,391} hemochromatosis, ¹³⁷ and Friedrich's ataxia^{26,33} results in yellow deposits. Poor dark adaptation is a common manifestation of systemic zinc depletion (i.e., acrodermatitis enteropathica). ^{46,312} The peripheral retinal appears hypopigmented in patients with inherited

^a Centre for Advanced Discovery and Experimental Therapeutics, Institute of Human Development, University of Manchester and Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PT, UK

^b Fundación de Investigación Oftalmológica, Instituto Oftalmológico Fernández-Vega, Oviedo, Asturias, Spain

^cThe Nuffield Laboratory of Ophthalmology (NDCN), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK

^{*} Corresponding author: Marta Ugarte, DPhil, FRCOphth, AV Hill Building, Oxford Road, Oxford M13 9PT, UK. E-mail address: mugarte@doctors.org.uk (M. Ugarte).

0039-6257/\$ — see front matter © 2013 Elsevier Inc. All rights reserved.

A. Iron					
Sample	Age	Sex	Method	Iron	Authors
RPE/choroid					
Rat Long-Evans	2-8 weeks	N/A	PIXE	178.4 ^a	Yefimova et al ³⁹⁵
Rat					
Brown-	4 months	Male	ICP-OES	$65.0 + 8^{a}$	Chen et al ⁴⁹
Norway	30 months	Male		$195.4 + 33^{a}$	
Mouse					
c57BL/6	3-6 months	Male + Female	GF AAS	$103 + 9^{b}$	Hahn et al ¹²⁷
	16-19 months	Male + Female		$147 + 8^{b}$	Hadziahmetovic et al ¹²³
Neuroretina					
Human	N/A	N/A	GF AAS	$117.63 + 14.58^a$	Eckhert ⁹¹
Human	·	·			
white	17.8 years (4–32)	Female	AAS	$96.1 + 14.8^{b}$	Hahn et al ¹²⁸
WIIICE	73.1 years (65–88)	Female	71113	137 + 13.8 ^b	Hailli et ai
I Issues our	73.1 years (65–88)	remale		13/ + 13.8	
Human	04.0 (17.05)	3.5.1		F7.0 . 0.05h	
white	24.8 years (17–35)	Male		$57.2 + 8.06^{b}$	
	74.1 (65–83)	Male		$95.4 + 13.6^{b}$	
Mouse					
c57BL/6	3 weeks	N/A	N/A	$41.1 + 6.5^{b}$	Deleon et al ⁷⁹
	3–6 months	Male + Female	GF AAS	$47 + 4^{b}$	Hahn et al ¹²⁷
	12-19 months	Male + Female		29 + 2 ^b	Hadziahmetovic et al ¹²³
B. Zinc					
Sample	Age	Sex	Method	Zinc (μg/g dry weight)	Authors
					<u> </u>
RPE/choroid					
Human					
No AMD	73 \pm 12 years	Men + Women	ICPMS	292.1 + 98.5	Erie et al ⁹²
AMD-MGS 2-4	78 \pm 10 years	Men + Women		223.7 + 94.0	
Human					
Caucasian	15-87 years	N/A	ICPMS		Wills et al ^{378,377}
Rat					
Sprague-Dawley	N/A	N/A	ICPMS	75.8 + 7.4	Fabe et al ⁹⁴
Neuroretina	·	·			
Human	N/A	N/A	AAS	3.8 + 0.9	Eckhert ⁹¹
	14/11	14/11	71/13	5.8 + 0.5	Leknere
Human	=0 . 40			400.4	
No AMD	73 ± 12 years	Men + Women	ICPMS	123.1 + 62.2	Erie et al ⁹²
AMD-MGS 2-4	78 \pm 10 years	Men + Women		98.6 + 27.9	
Human					
Caucasian No AMD	15—87 years	Men + Women	ICPMS	9.8	Wills et al ³⁷⁸
Rat					
Sprague-Dawley	N/A	N/A	ICPMS	~72	Fabe et al ⁹⁴
C. Copper					
Sample	Age	Sex	Method	Copper (μg/g dry weight)	Authors
RPE/choroid					
Human					
	72 12	Mon Wom	ICDMC	66.11	Erie et al ⁹²
No AMD	73 ± 12 years	Men + Wom	ICPMS	6.6 + 1.4	riie et ai
AMD-MGS 2-4	$78 \pm 10 \text{ years}$	Men + Wom		5.1 + 1.1	
Human					
white	15 \pm 87 years	N/A	ICPMS	estimated \sim 2	Wills et al ³⁷⁸
Neuroretina					
Human	N/A	N/A	AAS	6 ± 1	Eckhert ⁹¹
Human					
No AMD	73 \pm 12 years	Men + Wom	ICPMS	9.0 + 5.0	Erie et al ⁹²
AMD-MGS 2-4	78 ± 12 years	Men + Wom	IGI IVID	8.3 + 3.0	LITE CL al
	70 ± 10 years	MEII + MOIII		6.3 + 3.0	
Human					Wills et al ³⁷⁸

 $AAS = atomic \ absorption \ spectrometry; \ GF = graphite \ furnace; \ ICPMS = inductively \ coupled \ plasma \ mass \ spectrometry; \ ICPOES = inductively \ coupled \ plasma - optical \ emission \ spectrometer; \ MGS = Minnesota \ grading \ system; \ N/A = not \ available.$

^a μg/g dry weight.

b ng/retina.

Download English Version:

https://daneshyari.com/en/article/4032545

Download Persian Version:

https://daneshyari.com/article/4032545

<u>Daneshyari.com</u>