
A new approach in development of distributed framework
for automated software testing using agents

P. Dhavachelvan a,*, G.V. Uma b, V.S.K. Venkatachalapathy c

a Department of Information Technology, Thiruvalluvar College of Engineering and Technology, Tamilnadu, India
b Department of Computer Science and Engineering, Anna University, Tamilnadu, India

c Department of Mechanical Engineering, Sri Manakula Vinayagar Engineering College, Pondicherry, India

Received 14 November 2003; accepted 16 December 2005
Available online 10 February 2006

Abstract

Software testing is the technical kernel of software quality engineering, and to develop critical and complex software systems not only
requires a complete, consistent and unambiguous design, and implementation methods, but also a suitable testing environment that
meets certain requirements, particularly, to face the complexity issues. Traditional methods, such as analyzing each requirement and
developing test cases to verify correct implementation, are not effective in understanding the software’s overall complex behavior. In that
respect, existing approaches to software testing are viewed as time-consuming and insufficient for the dynamism of the modern business
environment. This dynamics requires new tools and techniques, which can be employed in tandem with innovative approaches to using
and combining existing software engineering methods. This work advocates the use of a recently proposed software engineering para-
digm, which is particularly suited to the construction of complex and distributed software-testing systems, which is known as Agent-Ori-
ented Software Engineering. This methodology is a new one, which gives the basic approach to agent-based frameworks for testing.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Software testing; Agent; Agent-Oriented Software Engineering; Agent-based software testing; Distributed software testing

1. Introduction

Today’s innovative software implementation technolo-
gies enable the creation of more sophisticated and flexible
applications. But they also increase the expertise needed
to achieve or extend software quality goals. So, building
high quality software for real world applications is difficult.
This is true, irrespective of models and techniques are
applied for building the software and this is due to the con-
sequence of the essential complexity of software [12]. The
expectation is that the next generation of software systems
will get even more complex in the aspects of development
and testing [10,12].

Testing activities support quality assurance by executing
the software being studied to gather information about the
nature of the software. The primary advantage of testing is
that the software being developed can be executed in its
appropriate environment and the results of these execu-
tions with the test cases provide confidence that the soft-
ware will perform as intended and must satisfy the users’
requirements [16]. These issues make the software testing
a complex process and the primary source of complexity
on testing of software systems is the intrinsic complexity
of the software being tested.

It is now widely accepted within the software engineer-
ing community that the complexity underlying the software
engineering processes can be managed through the applica-
tion of various elementary mechanisms. Booch [1] identifies
these mechanisms to be: abstraction, decomposition, and

organization. The integration of these mechanisms to deliv-
er a coherent approach to engineering software systems can

0950-7051/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.knosys.2005.12.002

* Corresponding author.
E-mail addresses: pd_chelvoume@yahoo.co.in (P. Dhavachelvan),

gvuma@annauniv.edu (G.V. Uma), vskvenkatachalapathy@yahoo.com
(V.S.K. Venkatachalapathy).

www.elsevier.com/locate/knosys

Knowledge-Based Systems 19 (2006) 235–247

mailto:pd_chelvoume@yahoo.co.in
mailto:gvuma@annauniv.edu
mailto:vskvenkatachalapathy@yahoo.com


be achieved through the Agent-Oriented Software Engi-
neering (AOSE) paradigm and such integrated frameworks
offer much potential to manage the increasing levels of
complexity inherent within software engineering processes
[11,13].

Agent technologies are interesting to users only if those
technologies address the issues of interest to the users. The
Adequacy and Establishment hypotheses [12] support
that:

• Agent-oriented decompositions are an effective way of
partitioning the problem space of a complex system.

• The key abstractions of the agent-oriented mindset are a
natural means of modeling complex systems.

• The agent-oriented philosophy for identifying and man-
aging organizational relationships is appropriate for
dealing with the dependencies and interactions that exist
in a complex system.

So, from the agents’ point of view, the work presented in
this thesis is motivated by the hypothesis that agent-based
computing offers better approach to manage the complex-
ity that is inherent with the testing of modern software
systems.

On the other hand, agents are identified as flexible prob-
lem solvers that operate in an environment over which they
have only partial control and observability, and whose
interactions need to be handled in a similar flexible manner
[9,17,8,11]. As agent technology has matured and become
more accepted many diverse AOSE approaches and
methodologies have been proposed. GAIA (Generic Archi-
tecture for Information Availability) [18] and MaSE
(Multi-agent Systems Engineering Methodology) [4] are
presented as the methodologies for agent-oriented analysis
and design. Both the methodologies support the micro-
level (agent structure) as well as the macro-level (agent
society and organization structure) of agent development.
MaSE is similar to GAIA with respect to generality and
the application domain supported, but in addition MaSE
goes further regarding support for automatic code
creation.

SODA (Societies in Open and Distributed Agent spac-
es), is a methodology proposed for agent-oriented analysis
and design of Internet-based applications [15], i.e., this
method mainly concentrates on the inter-agent (macro-
level) issues. Tropos [2] is proposed to cover early require-
ments, late requirements, architectural design, detailed
design, and implementation. It facilitates the construction
of a detailed model of the requirements without design
information, which is the significant feature of the Tropos
methodology. Prometheus [14] is a methodology aimed at
non-experts, which includes three phases: system specifica-

tion, architectural design and detailed design. Prometheus
functionalities have less implementation bias compared to
other methodologies.

Overall, all these methodologies shown that the agent-
based computing would seem the most appropriate

approach for problem domains, where data, control, exper-
tise or resources are distributed and provide a reasonable
support for basic agent-oriented concepts such as autono-
my, mental attitudes, pro-activeness, reactiveness, etc. In
summary, the reviewed methodologies have shown that
there is a concept for analyzing the agent-based systems,
but no support for non-agent systems. In addition to that
several open issues that include testing, quality assurance,
supporting management guidelines, and maintenance are
not discussed by any of these methodologies. So from the
AOSE perspective, these uncovered issues motivated us
to carry out this research on agent-based software testing
as an attempt to bridge the gap between software testing
and agents.

Based on these two different perspectives, in this paper,
we reported on a proposal for agent based approach in
software testing. This approach is a first step towards pro-
posing a composite testing environment based on agents,
which possibly incorporates several testing techniques
and to provide the quantitative justification theory of pre-
cisely why agent-based systems are well suited for testing
complex systems. The paper is organized as follows: Sec-
tion 2 defines the Multi-Agent System for software testing
as an application domain. Sections 3 and 4 discuss about
the implementation issues of different types of agents of
the proposed system. Section 5 provides the quantitative
statistical analysis over results obtained in the experiments
and Section 6 concludes the proposed work with its merits
and enhancements.

2. Multi-agent system for software testing

Definition 1. Let ‘S’ be the proposed MAS for providing
variety of testing environments (techniques) and it can be
defined as

S ¼

ðD1;D2;D3; . . . ;DzÞ;
ða1; a2; a3; a4; . . . ; axÞ;
a1 ¼ ða1; ac11; ac12; . . . ; ac1ðK1�1ÞÞ;
a2 ¼ ða2; ac21; ac22; . . . ; ac2ðK2�1ÞÞ;

..

.

ax ¼ ðax; acx1; acx2; . . . ; acxðKx�1ÞÞ;

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð1Þ

where the following hold:

• ‘D’ is the distributor agent and ‘z’ is the number of dis-
tributor agents in the MAS.

• ‘av’ is the testing agent and ‘x’ is the number of testing
agents in the MAS and then 0 < v 6 x. Since this mul-
ti-agent framework provides, scalar type testing environ-

ment, i.e., one agent can provide the testing environment
with only one testing technique, ‘x’ is the number of test-
ing agents and also the number of testing techniques
available in the MAS.

• ‘ac’ refers to the cloning agent(s) and ‘acvw’ is the one of
the clone of ‘av’ and then 0 < w 6 kv � 1.

236 P. Dhavachelvan et al. / Knowledge-Based Systems 19 (2006) 235–247



Download English Version:

https://daneshyari.com/en/article/403291

Download Persian Version:

https://daneshyari.com/article/403291

Daneshyari.com

https://daneshyari.com/en/article/403291
https://daneshyari.com/article/403291
https://daneshyari.com

