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a b s t r a c t

Two experiments evaluated the effect of retinal image size on the proto-object model of visual clutter
perception. Experiment 1 had 20 participants order 90 small images of random-category real-world sce-
nes from least to most cluttered. Aggregating these individual rankings into a single median clutter rank-
ing and comparing it to a previously reported clutter ranking of larger versions of the identical scenes
yielded a Spearman’s q = .953 (p < .001), suggesting that relative clutter perception is largely invariant
to image size. We then applied the proto-object model of clutter perception to these smaller images
and obtained a clutter estimate for each. Correlating these estimates with the median behavioral ranking
yielded a Spearman’s q = .852 (p < .001), which we showed in a comparative analysis to be better than six
other methods of estimating clutter. Experiment 2 intermixed large and small versions of the Experiment
1 scenes and had participants (n = 18) again rank them for clutter. We found that median clutter rankings
of these size-intermixed images were essentially the same as the small and large median rankings from
Experiment 1, suggesting size invariance in absolute clutter perception. Moreover, the proto-object
model again successfully captured this result. We conclude that both relative and absolute clutter percep-
tion is invariant to retinal image size. We further speculate that clutter perception is mediated by
proto-objects—a preattentive level of visual representation between features and objects—and that using
the proto-object model we may be able to glimpse into this pre-attentive world.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Everyone knows what clutter is; it is the typically negative per-
cept resulting from the disordered organization of an excessive
number of objects. Most previous work on clutter has focused on
its consequences for task performance. The clearest example of this
is the decrease in visual search efficiency accompanying an
increase in clutter (Bravo & Farid, 2008; Henderson, Chanceaux,
& Smith, 2009; Mack & Oliva, 2004; Neider & Zelinsky, 2011;
Rosenholtz, Li, & Nakano, 2007). This effect of clutter on search effi-
ciency led some researchers to suggest that clutter might be used
as a surrogate measure of search set size (Neider & Zelinsky,
2011; Rosenholtz, Li, & Nakano, 2007), the number of objects
appearing in a search display. This suggestion in turn led to the
development of several computational methods for quantifying
clutter (e.g., Bravo & Farid, 2008; Lohrenz et al., 2009;
Rosenholtz, Li, & Nakano, 2007; van den Berg, Cornelissen, &
Roerdink, 2009) so as to predict search efficiency in real-world sce-
nes, stimuli in which a set of discrete objects cannot be defined

objectively. A goal of our study is to further evaluate one of these
methods for quantifying clutter—the proto-object model of clutter
perception (Yu, Samaras, & Zelinsky, 2014).

There is a fundamental relationship between clutter and visual
attention. Much attention research has been devoted to identifying
those mental processes that can be performed simultaneously,
without creating interference or performance costs, and those that
result in performance costs when combined. The former have been
termed pre-attentive and the latter post-attentive (or simply, atten-
tive), referring to the fact that individual processes must be
selected for serial execution so as to avoid incurring costs. This dis-
tinction largely shaped the massive literature on visual search (see
Wolfe, 1998; for a review), but dates even farther back to the sem-
inal attention studies using dichotic listening paradigms (see
Pashler, 1998; for a review). In addition to a small set of basic
visual features that can be extracted and used in parallel (Wolfe
& Horowitz, 2004), our perception of clutter is likely
pre-attentive; we seem able to effortlessly estimate how much
‘‘stuff’’ there is over a region of space (see Alvarez, 2011; for a
review). This follows from the fact that clutter perception is likely
derived from summary statistics computed over local pooling
regions (Rosenholtz, Huang, & Ehinger, 2012; van den Berg,
Cornelissen, & Roerdink, 2009), as has been proposed for crowding
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(Balas, Nakano, & Rosenholtz, 2009; Rosenholtz, Huang, Raj, et al.,
2012). Setting aside for now the question of what units are actually
summed, the assumption is that this summary is obtained
pre-attentively and does not involve an actual count of discrete
things; visual information is accumulated in parallel and summed
to derive the clutter estimate. Indeed, our percept of clutter may be
more than just the product of a pre-attentive process; it may be
our perception of pre-attention.

Size also matters. Limiting this statement to vision, examples
range from older work showing that larger shapes are given greater
perceptual weight by the oculomotor system, causing saccades to
land closer to bigger objects (Findlay, 1982), to recent work show-
ing that common objects have a canonical size that affects their
recognition speed and accuracy (Konkle & Oliva, 2011). Shifting
focus from objects to scenes, another goal of our study asks how
the retinal size of visual scenes impacts the perception of scene
clutter.

Understanding the relationship between retinal image size and
clutter perception is important. We live in a very cluttered world,
filled with busy city streets, messy desks, and computer screens
packed with icons numbering in the dozens if not hundreds. The
sizes of these screens, however, have taken two trends. One has
been to make computer monitors bigger so as to fit even more
things in our field of view. The other has been to decrease the size
of these screens so that we can put them in our purses and pockets
and carry them wherever we go. This latter trend creates an obvi-
ous problem: given that the screens through which we increasingly
interact with the world have become smaller, but the number of
apps and other icons that we put on these screens has increased
or stayed about the same, our world is becoming perceptually
compressed into increasingly smaller spaces.

What are the consequences of this compression for our percep-
tion of clutter? One possibility is that perceived clutter might
increase with decreasing retinal size. Objects in smaller scenes
are closer together. If the absolute distance between objects affects
perceived clutter, small scenes should be perceived as being more
cluttered than larger ones. Another possibility is that retinal size
doesn’t matter for clutter perception, and that what is important
is the number of perceived objects (or proto-objects). If so, decreas-
ing the size of an image should not affect perceived clutter so long
as this manipulation is not so drastic as to change the number of
objects that are perceived.

2. Experiment 1

To investigate the relationship between retinal image size and
perceived clutter we adopt the joint behavioral and computational
approach reported recently by Yu, Samaras, and Zelinsky (2014).
These authors asked participants to rank order 90 images of ran-
dom category scenes from least to most cluttered. Note that a
time-unlimited clutter ranking task is perfectly suited to the
broader goal of our study, to demarcate the boundary between
pre-attention and attention by obtaining an explicit estimate of
clutter (pre-attention) that is minimally confounded with more
goal-directed (attentive) tasks such as search, scene memory, or
even free viewing. Yu et al. then modeled this clutter ranking by
computing proto-objects for each scene and ordering them based
on the number of proto-objects in each. Model success was
assessed by correlating these behavioral and computational rank-
ings. In Experiment 1 we used the scenes from Yu et al. to obtain
another behavioral ranking of clutter, only these scenes were
one-quarter the size of those used in the earlier study. This consis-
tency in both stimuli and task allows the new behavioral clutter
ranking to be compared directly to the one from Yu and colleagues
so as to determine the effect of retinal image size on clutter

perception. Additionally, we test the proto-object model of clutter
perception from Yu et al. to determine how well it predicts the
effect of changing image size on these behavioral clutter rankings,
and compare these predictions to those from other models of clut-
ter perception.

2.1. The proto-object model of clutter perception

Central to our approach is the suggestion that clutter perception
can be predicted by how much stuff appears in a scene, where
‘‘stuff’’ is quantified in terms of locally similar image features that
become merged into perceptual fragments that we refer to as
proto-objects. This definition of a proto-object loosely follows the
original usage of the term as coined by Rensink and Enns (1995).
These authors conceptualized proto-objects as being relatively
small and highly volatile clusters of visual features, created by
the pre-attentive application of local grouping processes, from
which more extensive visual object representations are ultimately
built (see also Rensink, 2000). We subscribe to all of these defining
properties. Indeed, rather than substantively reconceptualizing
what a proto-object is, we see our work as contributing to the fur-
ther quantification of this construct and its application to
real-world objects and scenes.

Several models of attention have appealed to proto-objects in
the context of visually complex stimuli. These have taken two basic
approaches. One has been to redefine proto-objects as regions of
high image salience. For example, Walther and Koch (2006) used
a saliency map (Itti & Koch, 2001; Itti, Koch, & Niebur, 1998) to
identify salient points in an image, then spread the activation from
each back through the intensity, orientation, and color feature
maps to obtain a saliency-based segmentation that they referred
to as proto-objects (see also Borji, Sihite, & Itti, 2013; Russell
et al., 2014, for related approaches). Using this method,
Nuthmann and Henderson (2010) compared these salient
proto-objects to objects hand labeled from a scene to see which
could better describe the preferred viewing location (PVL) of behav-
ioral participants performing various scene inspection tasks. They
found that proto-objects were less successful than actual objects
in describing the PVL effect, at least for proto-objects defined by
feature salience. Another approach has been to use color blob
detectors (Forssén, 2004) applied directly to unprocessed images
(Wischnewski et al., 2009) and video (Wischnewski et al., 2010)
to define proto-objects. These proto-objects are then combined
with the Theory of Visual Attention (TVA, Bundesen, 1990) to pro-
duce a priority map that is used to predict allocations of visual
attention.

Our method for deriving proto-objects differs from previous
methods in at least two key respects. First, saliency is not consid-
ered in our method. We quantify how much stuff there is in a
scene, regardless of whether this stuff is salient or not. Second,
rather than using blob detectors to segment proto-objects from
an image, which at best restricts the shape of proto-objects to
coarse elliptical regions, we use more sophisticated image segmen-
tation techniques developed in the computer vision literature.
Specifically, we combine superpixel image segmentation (Liu
et al., 2011) with a clustering method (Comaniciu & Meer, 2002)
to merge featurally-similar superpixels into proto-objects. Note
that superpixels themselves are atomic regions of an image con-
taining pixels that are similar in some feature space, but superpixel
methods tend to over-segment images. For this reason we treat
superpixel segmentation as a preprocessing stage, one that we fol-
low with a merging stage in which neighboring superpixels that
are similar in color are combined to create more spatially extended
image fragments that we define as proto-objects. Our model then
simply counts the number of proto-objects in an image to obtain
an estimate of its clutter (Yu, Samaras, & Zelinsky, 2014).
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