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a b s t r a c t

Scores of visual attention models have been developed over the past several decades of research.
Differences in implementation, assumptions, and evaluations have made comparison of these models
very difficult. Taxonomies have been constructed in an attempt at the organization and classification
of models, but are not sufficient at quantifying which classes of models are most capable of explaining
available data. At the same time, a multitude of physiological and behavioral findings have been pub-
lished, measuring various aspects of human and non-human primate visual attention. All of these ele-
ments highlight the need to integrate the computational models with the data by (1) operationalizing
the definitions of visual attention tasks and (2) designing benchmark datasets to measure success on
specific tasks, under these definitions. In this paper, we provide some examples of operationalizing
and benchmarking different visual attention tasks, along with the relevant design considerations.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Several decades of experimental research have uncovered a
variety of neural and behavioral phenomena associated with visual
attention. Physiological and brain imaging studies have been useful
for exploring neural underpinnings of attention (Kastner &
Ungerleider, 2000; Miller & Buschman, 2013), and psychophysical
studies have examined various behavioural manifestations of
human visual attention (Petersen & Posner, 2012; Simons &
Chabris, 1999; Wolfe, 1998, 2007) (see also the ‘Course Readings’
section of the references). A synthesis of all this data is warranted;
however, while it is unclear what it means to truly understand
visual attention, these independent data points are likely insuffi-
cient. Instead, scientific progress is made by a meaningful com-
pression of data, for example by constructing models that can
explain and predict a diverse range of phenomena. In this domain,
computational, rather than conceptual (or descriptive) models,
have the advantage of providing quantitative explanations of the
collected observations as well as making new predictions that

are testable and verifiable. The use of computational models has
led to progress in our understanding of various phenomena. For
instance, developments in bottom-up attention modeling have
led to an increased understanding of where people look in different
images under varying conditions (Borji et al., 2013; Itti & Baldi,
2009; Judd, 2011; Tatler, 2007), computational models have been
able to predict the effects of crowding on visual tasks (Balas,
Nakano, & Rosenholtz, 2009; Rosenholtz et al., 2012), and to model
top-down scene guidance for visual search tasks (Ehinger et al.,
2009; Torralba, Oliva, Castelhano, & Henderson, 2006; Tsotsos,
2011). Taken together, this suggests that constructing computa-
tional models to solve specific visual attention tasks could lead
to progress in understanding visual attention as a whole.

Nevertheless, we begin in Section 2 by highlighting the difficul-
ties in model evaluation and comparison brought about by the
simultaneous abundance of computational models of visual atten-
tion and the lack of model overlap across taxonomies. In Section 3
we advocate for quantitative evaluation via (i) operationalizing
definitions of individual visual attention tasks and (ii) specifying
rigorous protocols for measuring model performance under those
tasks, and we provide some implementable examples.
Operationalized task definitions are those that include sufficient
detail and specificity so that the tasks may be put into practice,
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implemented on a computer and quantitatively evaluated on
meaningful input stimuli. We advocate against any abstract and
ambiguous constructs that do not lend themselves easily to quan-
titative evaluation.

Next, in Section 4 we emphasize the need for large,
multi-faceted, standardized benchmark datasets, and offer a dis-
cussion of the design considerations that surface. Finally, we out-
line the benefits of competition-style online benchmarks in
Section 5 for measuring modeling progress. Altogether, this paper
offers a number of suggestions and considerations that have pro-
ven successful at bringing structure and standardization to other
computational areas (e.g. evaluation methodologies and bench-
mark datasets in saliency modeling (Borji et al., 2013; Bylinskii
et al., 2014; Judd, Durand, & Torralba, 2012 ), computer vision
(Deng et al., 2009; Everingham et al., 2012; Lin et al., 2014;
Torralba, Fergus, & Freeman, 2008; Xiao et al., 2010), and natural
language processing (NIST, 2013; Voorhees, 2004; Voorhees &
Harman, 2005)).

2. Moving beyond taxonomies

Many computational models of visual attention have been built
during the past three decades. However, the sheer diversity of
models makes comparison and evaluation of progress in the field
of visual attention particularly difficult. In an attempt to under-
stand the relationships between different models, various tax-
onomies and other categorizations have been introduced, some
of which attempt to cover multiple types of computational models,
and others that focus on specific subareas of visual attention or
specific model structures. For instance, Frintrop, Rome, and
Christensen (2010) classify models according to their structure,
labeling them either as filter models, those that parse image fea-
tures via image mapping, or connectionist models, those that
employ neural network computations to process images. Tsotsos
and Rothenstein (2011) divide computational models (themselves
branching off from both computer and biological vision categories)
into four types: selective routing models, saliency map models,
temporal tagging models, and emergent attention models.
Kimura, Yonetani, and Hirayama (2013) classify models as either
bottom-up or top-down, each composed of several subcategories
determined by the models’ algorithmic approach. Borji and Itti
(2013) present a categorization of bottom-up and top-down mod-
els, qualitatively comparing 13 criteria.

In Fig. 1 we visualize the number of models that are considered
by each of 4 categorizations (Borji & Itti, 2013; Frintrop et al., 2010;
Kimura et al., 2013; Tsotsos & Rothenstein, 2011). We can see that
relatively few models occur in more than one taxonomy/catego-
rization, making comparisons very difficult. Each categorization
covers only a subset of models and proceeds by carving up these
models according to some author-defined set of characteristics.
Another observation is that the sheer number of visual attention
models that have been developed over the past few decades is
staggering, and continues to grow.

Let us consider a single model categorization in greater detail.
According to Borji and Itti (2013), there are a total of 13 criteria
by which many of these models may be compared: bottom-up,
top-down, spatial/spatiotemporal, task-type,
space-based/object-based, features, model type, static, dynamic,
synthetic, natural, measures, and dataset used. The first 7 criteria
correspond to the models themselves, and the latter 6 are specific
to task completion and evaluation. As Borji and Itti note, these cri-
teria help establish the scope of applicability of these different
models. In Fig. 2a, we visually represent this taxonomy by project-
ing down the model characteristics onto 3 dimensions. Gaussian
noise was added to the projections to visualize models with

identical 3-dimensional projections. The resulting representation
accurately captures the factor similarity of models, i.e. models that
are spatially clustered together share many taxonomical attributes.
The dimensions of this representation are principal components2

that represent a linear combination of factors, although they do align
fairly well with the factors: bottom-up/top-down, dynamic/static,
and synthetic/natural. In 2b, we hold this spatial layout of models
fixed, and overlay on top of it multiple model characteristics (repre-
sented by the coloring of models). From such a visualization we can
see that models are clustered together in model space, with many
overlapping and correlated characteristics. For example, bottom-up
and top-down models are segregated along the first dimension of
this representation, while models with synthetic versus natural
stimuli are segregated along the third dimension. Thus, although
the quantity of models is large, many reuse the same principles
and computational approaches, and thus have similar application
areas (use cases).

Taxonomies thus provide a way to describe models, but not
with a method of sorting through them to discover the most accu-
rate representation of human visual attention. We can use tax-
onomies to describe the characteristics of different models, or to
identify models which may be sensibly compared, because they
solve similar tasks or use comparable computational approaches.
However, if a quantitative evaluation is sought, these descriptions
need to be supplemented with a methodology of comparison.
Quantitative evaluation can help us isolate the model characteris-
tics that are essential to performance on different visual attention
tasks.

Even though some attempts have been made to quantitatively
evaluate a wide varieties of models according to some predefined
criteria (Borji, Sihite, & Itti, 2012; Filipe & Alexandre, 2013;
Heinke & Humphreys, 2005; Judd et al., 2012; Koehler et al.,
2014), these endeavors only provide a comparison of a relatively

Fig. 1. There are many logical ways of carving up the space of models in the visual
attention literature, and different taxonomies/categorizations consider different
subsets of models. Here we include four categorizations that cover a total of 142
models (listed in the appendix). Many, but not all, of the models included in each
categorization are accounted for here (45 from Tsotsos and Rothenstein (2011), 21
from Frintrop et al. (2010), 39 from Kimura et al. (2013), and 63 from Borji and Itti
(2013)). This figure shows the overlap in models across these 4 categorizations.
Each solid circle denotes a categorization, and each dashed circle is a node
connecting categorizations, denoting their intersection. The parenthesized numbers
are model counts. For instance, the model categorizations of Borji and Itti (2013)
and Kimura et al. (2013) only have 11 models in common. It is clear that there is
little overlap in models between the four categorizations.

2 Corresponding to combinations of factors with highest variance, as computed via
Principal Components Analysis (PCA).
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